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Abstract. There are two motivating questions in [M. Mahmoudi, A. Mousi-

vand, M. Crupi, G. Rinaldo, N. Terai and S. Yassemi, arXiv:1006.1087v1] and

[M. Mahmoudi, A. Mousivand, M. Crupi, G. Rinaldo, N. Terai and S. Yassemi,

J. Pure Appl. Algebra, 215(10) (2011), 2473-2480] about Castelnuovo-Mumford

regularity and vertex decomposability of simple graphs. In this paper, we give

negative answers to the questions by providing two counterexamples.
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1. Introduction

Throughout this paper, we assume that R = K[x1, . . . , xn] is the polynomial

ring over a field K and suppose that G is a finite simple graph on the vertex

set V = {x1, . . . , xn} and the edge set E. For a vertex v of G the set of all

neighbors of v is denoted by N(v) and we denote by N [v] the set N(v) ∪ {v} and

also we denote by deg(v) the number |N(v)|. An independent set of G is a subset

A of V (G) such that none of its elements are adjacent. The edge ideal of the

graph G is the quadratic square-free monomial ideal I(G) = ⟨xixj | {xi, xj} ∈ E⟩
and was first introduced by Villarreal [15]. Two edges {x, y} and {z, u} of G are

called 3-disjoint if the induced subgraph of G on {x, y, z, u} is disconnected or

equivalently in the complement of G the induced graph on {x, y, z, u} is a four-

cycle. A subset A of edges of G is called a pairwise 3-disjoint set of edges in G

if each pair of edges of A is 3-disjoint, see [10,12,17]. The maximum cardinality

of all pairwise 3-disjoint sets of edges in G is denoted by a(G), see [10,12,17].

Note that a(G) is called induced matching number. The Castelnuovo-Mumford
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regularity of a graded R-module M is defined as reg(M) = max{j−i| βi,j(M) ̸= 0}.
Katzmann [8] proved that reg(R/I(G)) ≥ a(G) for every simple graph G. Stanley

[13] defined a graded R-module M to be sequentially Cohen-Macaulay if there exists

a finite filtration of graded R-modules 0 = M0 ⊂ M1 ⊂ . . . ⊂ Mr = M such that

each Mi/Mi−1 is Cohen-Macaulay, and the Krull dimensions of the quotients are

increasing: dim(M1/M0) < dim(M2/M1) < . . . < dim(Mr/Mr−1). In particular,

we call the graph G sequentially Cohen-Macaulay (resp., unmixed) if R/I(G) is

sequentially Cohen-Macaulay (resp., unmixed). Herzog and Hibi [5] defined the

homogeneous ideal I to be componentwise linear if (Id) has a linear resolution for

all d, where (Id) is the ideal generated by all degree d elements of I. They proved

that if I is a square-free monomial ideal, then R/I is sequentially Cohen-Macaulay

if and only if the square-free Alexander dual I∨ is componentwise linear. It is known

that if I has a linear resolution, then I is componentwise linear. Note that for a

square-free monomial ideal I = ⟨{xi1 . . . xini
| i = 1, . . . , t}⟩ of R the Alexander

dual of I, denoted by I∨, is defined as I∨ = ∩t
i=1⟨xi1, . . . , xini⟩. For a monomial

ideal I, we write (Ii) to denote the ideal generated by the degree i elements of I.

The monomial ideal I is componentwise linear if (Ii) has a linear resolution for all

i (see [5]). If I is generated by square-free monomials, then we denote by I[i] the

ideal generated by the square-free monomials of degree i of I. Herzog and Hibi

[5, Proposition 1.5] proved that the square-free monomial ideal I is componentwise

linear if and only if I[i] has a linear resolution for all i.

Woodroofe [16] defined the graph G to be vertex decomposable if it is a totally

disconnected graph (with no edges) or if the following recursive conditions hold:

(i) there is a vertex v in G such that G\v and G\N [v] are both vertex decomposable;

(ii) no independent set in G \N [v] is a maximal independent set in G \ v.
The equality reg(R/I(G)) = a(G) was proved in the following cases: (i) G is a

tree graph; (ii) G is a chordal graph, where the graph G is called chordal if every

cycle of length > 3 has a chord; (iii) G is a bipartite graph and unmixed; (iv) G

is a bipartite graph and sequentially Cohen-Macaulay; (v) G is a very well-covered

graph, where the graph G is called very well-covered if it is unmixed without an

isolated vertices and 2ht(I(G)) = |V |; (vi) G is a C5-free vertex decomposable

graph; (vii) G is an almost complete multipartite graph such that it is sequentially

Cohen-Macaulay or unmixed. For details see [4,7,8,9,12,14,17].

Mahmoudi et al. in [11, Question 4.11] and in [12, Question 4.13] raised the

following question:
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Question 1.1. Let G be a sequentially Cohen-Macaulay graph with 2n vertices

which are not isolated and with ht(I(G)) = n. Then do we have the following

statements?

(1) G has a vertex v such that deg(v) = 1.

(2) G is vertex decomposable.

(3) reg(R/I(G)) = a(G).

In this paper we give a negative answer to this question by providing two coun-

terexamples. For every unexplained notion or terminology, we refer the reader to

[6].

2. Counterexamples

We start this section by recalling the following definition:

Definition 2.1. Let I be a monomial ideal of R all of whose generators have degree

d. Then I has a linear resolution if for all i ≥ 0 and for all j ̸= i + d, βi,j(I) = 0.

In particular, I has a linear resolution if and only if reg(I) = d.

Lemma 2.2. ([1, Lemma 2.3]) Let I = ⟨u1, . . . , um⟩ be a monomial ideal with

deg(ui) = di and di ≤ di+1 for 1 ≤ i ≤ m− 1. If (Ii) has a linear resolution for all

i < dm and reg(I) = dm, then I is componentwise linear.

By the following example we show that the Question 1.1(1) and (3) have negative

answers:

Example 2.3. Let G be the following graph:

x1 x2 x3 x4

x5 x6 x7 x8

Then we may consider the edge ideal

I = (x1x5, x1x6, x1x7, x1x8, x2x5, x2x6, x2x7, x2x8, x3x6, x3x7, x4x6, x4x8, x7x8)

of R = K[x1, . . . , x8]. This ideal has the following primary decomposition

I =(x5, x6, x7, x8) ∩ (x1, x2, x3, x4, x7) ∩ (x1, x2, x3, x4, x8) ∩ (x1, x2, x3, x6, x8)

∩ (x1, x2, x4, x6, x7) ∩ (x1, x2, x6, x7, x8).
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So ht(I) = 4 and

I∨ = (x5x6x7x8, x1x2x3x4x7, x1x2x3x4x8, x1x2x3x6x8, x1x2x4x6x7, x1x2x6x7x8).

Hence by using Macaulay2 [3], we have reg(R/I) = 2 and reg(I∨) = 5. Therefore

by Lemma 2.2 it readily follows that G is sequentially Cohen-Macaulay. One can

easily check that for any two edges {xi, xj} and {xk, xl} of G such that i, j, l, k are

different positive integers, the induced subgraph of G on the vertices {xi, xj , xk, xl}
is connected. Therefore, a(G) = 1 ̸= reg(R/I) giving a negative answer to Question

1.1.(1) and, in addition, G does not have a vertex of degree 1 contradicting Question

1.1.(3).

Recall that a circulant graph is defined as follows: let n ≥ 1 be an integer and

let S ⊆ {1, . . . , ⌊n
2 ⌋}. The circulant graph Cn(S) is the graph on n vertices V =

{x1, . . . , xn} such that {xi, xj} is an edge of Cn(S) if and only if min{|i−j|, n−|i−
j|} ∈ S. For ease of notation, we write Cn(a1, . . . , at) instead of Cn({a1, . . . , at}),
for more details see [2]. Let ∆ be a simplicial complex on the vertex set V =

{x1, . . . , xn}. Members of ∆ are called faces of ∆ and a facet of ∆ is a maximal

face of ∆ with respect to inclusion. The simplicial complex ∆ is pure if every facet

has the same cardinality. Also, the simplicial complex ∆ with the facets F1, . . . , Fr

is denoted by ∆ = ⟨F1, . . . , Fr⟩. The simplicial complex ∆ is called a simplex when

it has a unique facet. For the simplicial complex ∆ and the face F ∈ ∆, one can

introduce two new simplicial complexes. The deletion of F from ∆ is del∆(F ) =

{A ∈ ∆|F ∩A = ∅}. The link of F in ∆ is lk∆(F ) = {A ∈ ∆|F ∩A = ∅, A∪F ∈ ∆}.
If F = {v}, we write del∆v (resp. lk∆v) instead of del∆({v}) (resp. lk∆({v})); see
[6] for details information. The Stanley-Reisner ideal of ∆ over K is the ideal I∆

of R which is generated by those square-free monomials xF with F /∈ ∆, where

xF =
∏

xi∈F xi. Let I be an arbitrary square-free monomial ideal. Then there is a

unique simplicial complex ∆ such that I = I∆. Following [16] a simplicial complex

∆ is recursively defined to be vertex decomposable if it is either a simplex or else

has some vertex v so that (i) both del∆v and lk∆v are vertex decomposable, and

(ii) no face of lk∆v is a facet of del∆v.

A simplicial complex ∆ is shellable if the facets of ∆ can be ordered, say

F1, . . . , Fs, such that for all 1 ≤ i < j ≤ s, there exists some x ∈ Fj \ Fi and

some k ∈ {1, 2, . . . , j − 1} with Fj \ Fk = {x}. Hence if ∆ is shellable with shelling

order F1, . . . , Fs, then for each 2 ≤ j ≤ s, the subcomplex ⟨F1, . . . , Fj−1⟩ ∩ ⟨Fj⟩ is
pure of dimension dimFj − 1, for detials see [6, Section 8.2]. The following impli-

cations hold:
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vertex decomposable =⇒ shellable =⇒ sequentially Cohen-Macaulay.

Also, both implications are known to be strict.

The independence complex of the graph G is defined by Ind(G) = {F ⊆ V | F
is an independence set in G}. It is clear I(G) = IInd(G). Let v be a vertex of G.

By [7] we have the following relations:

delInd(G)v = Ind(G \ v) and lkInd(G)v = Ind(G \N [v]). Therefore one can deduce

that the graph G is vertex decomposable if and only if the independence complex

Ind(G) is vertex decomposable.

Theorem 2.4. ([2, Theorem 6.1 (iii)]) The graph C16(1, 4, 8) is the smallest well-

covered circulant that is shellable but not vertex decomposable.

By the following example we show that Question 1.1(2) has a negative answer:

Example 2.5. Let I be an ideal of R = K[x1, . . . , x26] generated by the following

monomials

x16x26 x15x26 x13x26 x12x26 x10x26 x8x26 x7x26 x6x26 x5x26 x4x26 x3x26 x2x26 x1x26

x16x25 x15x25 x13x25 x12x25 x10x25 x8x25 x7x25 x6x25 x5x25 x4x25 x3x25 x2x25 x1x25

x16x24 x15x24 x13x24 x12x24 x10x24 x8x24 x7x24 x6x24 x5x24 x4x24 x3x24 x2x24 x1x24

x16x23 x15x23 x13x23 x12x23 x10x23 x8x23 x7x23 x6x23 x5x23 x4x23 x3x23 x2x23 x1x23

x16x22 x15x22 x13x22 x12x22 x10x22 x8x22 x7x22 x6x22 x5x22 x4x22 x3x22 x2x22 x1x22

x16x21 x15x21 x13x21 x12x21 x10x21 x8x21 x7x21 x6x21 x5x21 x4x21 x3x21 x2x21 x1x21

x16x20 x15x20 x13x20 x12x20 x10x20 x8x20 x7x20 x6x20 x5x20 x4x20 x3x20 x2x20 x1x20

x16x19 x15x19 x13x19 x12x19 x10x19 x8x19 x7x19 x6x19 x5x19 x4x19 x3x19 x2x19 x1x19

x16x18 x15x18 x13x18 x12x18 x10x18 x8x18 x7x18 x6x18 x5x18 x4x18 x3x18 x2x18 x1x18

x16x17 x15x17 x13x17 x12x17 x10x17 x8x17 x7x17 x6x17 x5x17 x4x17 x3x17 x2x17 x1x17

x15x16 x12x16 x8x16 x4x16 x1x16 x14x15 x11x15 x7x15 x3x15 x13x14 x10x14 x6x14 x2x14

x12x13 x9x13 x5x13 x1x13 x11x12 x8x12 x4x12 x10x11 x7x11 x3x11 x9x10 x6x10 x2x10

x8x9 x5x9 x1x9 x7x8 x4x8 x6x7 x3x7 x5x6 x2x6 x4x5 x1x5 x3x4 x2x3

x1x2

The ideal I is an edge ideal of a graph, say G. This ideal has the form

I = (J, x17, x18, · · · , x26) ∩ (x1, · · · , x8, x10, x12, x13, x15, x16),

where J is the edge ideal of circulant graph C16(1, 4, 8). This ideal has the following

primary decomposition

I =
80
∩
i=1

(pi, x17, x18, · · · , x26) ∩ (x1, · · · , x8, x10, x12, x13, x15, x16);

where pi for 1 ≤ i ≤ 80 is an associated prime of circulant graph C16(1, 4, 8). There-

fore ht(I) = 13 and the simplicial complex Ind(G) has 81 facets as follows:
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F0 = {x9, x11, x14, x17, x18, x19, x20, x21, x22, x23, x24, x25, x26},
F1 = {x9, x11, x14, x16}, F2 = {x5, x11, x14, x16}, F3 = {x7, x9, x14, x16}, F4 = {x3, x9, x14, x16}, F5 = {x5, x7, x14, x16},
F6 = {x3, x5, x14, x16}, F7 = {x6, x9, x11, x16}, F8 = {x5, x7, x10, x16}, F9 = {x2, x5, x11, x16}, F10 = {x2, x9, x11, x16},
F11 = {x2, x7, x13, x16}, F12 = {x7, x10, x13, x16}, F13 = {x2, x11, x13, x16}, F14 = {x6, x11, x13, x16}, F15 = {x3, x5, x10, x16},
F16 = {x3, x10, x13, x16}, F17 = {x3, x6, x13, x16}, F18 = {x2, x7, x9, x16}, F19 = {x3, x6, x9, x16}, F20 = {x2, x5, x7, x16},
F21 = {x7, x9, x12, x14}, F22 = {x1, x4, x10, x15}, F23 = {x1, x8, x10, x15}, F24 = {x5, x8, x10, x15}, F25 = {x1, x10, x12, x15},
F26 = {x4, x10, x13, x15}, F27 = {x8, x10, x13, x15}, F28 = {x5, x10, x12, x15}, F29 = {x3, x9, x12, x14}, F30 = {x3, x8, x10, x13},
F31 = {x3, x5, x8, x14}, F32 = {x5, x8, x11, x14}, F33 = {x6, x8, x11, x13}, F34 = {x6, x8, x13, x15}, F35 = {x4, x6, x13, x15},
F36 = {x2, x8, x13, x15}, F37 = {x2, x8, x11, x13}, F38 = {x1, x4, x6, x15}, F39 = {x4, x6, x9, x15}, F40 = {x6, x9, x12, x15},
F41 = {x1, x6, x12, x15}, F42 = {x1, x6, x8, x15}, F43 = {x2, x4, x13, x15}, F44 = {x2, x9, x12, x15}, F45 = {x2, x4, x9, x15},
F46 = {x4, x6, x11, x13}, F47 = {x4, x9, x11, x14}, F48 = {x4, x7, x9, x14}, F49 = {x2, x4, x11, x13}, F50 = {x5, x7, x10, x12},
F51 = {x1, x3, x8, x14}, F52 = {x1, x8, x11, x14}, F53 = {x1, x3, x12, x14}, F54 = {x1, x7, x12, x14}, F55 = {x1, x7, x10, x12},
F56 = {x3, x6, x8, x13}, F57 = {x5, x7, x12, x14}, F58 = {x3, x5, x12, x14}, F59 = {x3, x5, x10, x12}, F60 = {x1, x3, x10, x12},
F61 = {x2, x7, x9, x12}, F62 = {x3, x6, x9, x12}, F63 = {x2, x5, x7, x12}, F64 = {x2, x5, x8, x11}, F65 = {x1, x6, x8, x11},
F66 = {x2, x4, x9, x11}, F67 = {x4, x6, x9, x11}, F68 = {x1, x3, x6, x12}, F69 = {x2, x5, x8, x15}, F70 = {x2, x5, x12, x15},
F71 = {x1, x4, x6, x11}, F72 = {x1, x4, x11, x14}, F73 = {x1, x4, x7, x14}, F74 = {x3, x5, x8, x10}, F75 = {x1, x3, x8, x10},
F76 = {x1, x4, x7, x10}, F77 = {x4, x7, x10, x13}, F78 = {x1, x3, x6, x8}, F79 = {x2, x4, x7, x9}, F80 = {x2, x4, x7, x13}

By the proof of Theorem 2.4, we have F1, . . . , F80 is a shelling order of Ind(C16(1, 4, 8))

and the graph C16(1, 4, 8) is the smallest well-covered circulant that is shellable

but not vertex decomposable. We claim that F0, F1, . . . , F80 is a shelling order of

Ind(G). Since F1, . . . , F80 is a shelling order, it is enough to show that for each i,

there exists some v ∈ Fi\F0 and some k < i such that Fi\Fk = {v}. If i = 1, then it

is clear F1\F0 = {x16}. Now we assume that 1 ̸= i ≤ 80. Since Fi\F1 ⊆ Fi\F0, we

may choose v ∈ Fi \F1 and so there exists some 1 ≤ k < i such that Fi \Fk = {v}.
Therefore Ind(G) is shellable and so G is sequentially Cohen-Macaulay.

Now, we claim that for each element xt with 1 ≤ t ≤ 26, delInd(G)(xt) is not ver-

tex decomposable. If xt ∈ {x9, x11, x14, x17, . . . , x26}, then by using the definition

on the above facets it is obvious that delInd(G)(xt) has a facet, say F ′, such that

F ′ ̸= Fi for 0 ≤ i ≤ 80, and in this case delInd(G)(xt) is not vertex decomposable.

For the remaining claim, we assume that xt ∈ {x1, . . . , x8, x10, x12, x13, x15, x16}
and we will show that delInd(G)(xt) is not shellable and so it is not vertex de-

composable. By contrary, let delInd(G)(xt) be shellable and so we may consider

the shelling order F0 = Fs0 , Fs1 , . . . , Fsr . By this shelling order we have F0 =

(Fs1 \ {xm})∪ {x17, . . . , x26} for some xm ∈ Fs1 and for all i and j < i there exists

xl ∈ Fsi \ Fsj and k < i such that Fsi \ Fsk = {xl}. By this assumption we claim

that Fs1 , . . . , Fsr is shellable and for this it is enough for such k to assume Fsk = F0.

In this case Fsi = (F0 \ {x17, . . . , x26}) ∪ {xl} = {x9, x11, x14, xl}. We may assume

Fsi ̸= Fs1 . Since Fsi = {x9, x11, x14, xl} and Fs1 = {x9, x11, x14, xm}, we have

Fsi \ Fs1 = {xl}. It therefore follows that Fs1 , . . . , Fsr is a shelling order. Hence

delInd(C16(1,4,8))(xt) = ⟨Fs1 , . . . , Fsr ⟩ and this means that delInd(C16(1,4,8))(xt) is

pure shellable and Cohen-Macaulay. This is a contradiction by the proof of Theo-

rem 2.4. Thus delInd(G)(xt) is not shellable and so G is not vertex decomposable.
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Hence we construct a sequentially Cohen-Macaulay graph with 26 vertices such

that ht(I) = 13 but it is not vertex decomposable.
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