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1. Introduction

A linear operator R defined on an algebra A is called a Rota—Baxter operator,

if the following relation holds for all a, b ∈ A,

R(a)R(b) = R(R(a)b+ aR(b) + kab).

Here k is a fixed scalar from the ground field, which is called a weight of R. Nowa-

days, we observe the growing interest to such operators. Defined by G. Baxter in

1960 [5] as an abstract generalization of the integral operator, Rota—Baxter opera-

tors showed their importance due to close connection with the Yang—Baxter equa-

tion [1,6], pre- and postalgebras [3,15] (among them pre-Lie algebras (also called

left-symmetric algebras) are of the most interest), double Lie algebras [13,14]. For

more details see the monograph of L. Guo [17].

A notion of Lie conformal algebra introduced by V.G. Kac in [19] is an important

tool to study vertex operator algebras. In turn, vertex algebras describe algebraic

properties of the operator product expansion (OPE) in the two-dimensional con-

formal field theory developed by A.A. Belavin, A.M. Polyakov and A.B. Zamolod-

chikov [7] in 1983. In 1986, R. Borcherds confirmed the deep connection between
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vertex algebras and the Monster group [9]. At the moment, vertex algebras form

an actively studied area related to many others such as representation theory and

mathematical physics, see [12,22].

In 2008, J. Liberati introduced [23] a notion of Lie conformal bialgebra and

suggested the so called conformal classical Yang—Baxter equation as a source

of (coboundary) Lie conformal bialgebras. In 2012, this theory was extended by

C. Boyallian and J. Liberati for Lie pseudobialgebras [10].

In 2020, Y. Hong and C. Bai introduced [18] a notion of Rota—Baxter operator

on a Lie conformal algebra and showed that every skew-symmetric solution to the

conformal classical Yang—Baxter equation on a Lie conformal algebra L endowed

with an invariant bilinear nondegenerate form gives rise to a Rota—Baxter operator

on L. This result reproduces the well-known connection between Rota—Baxter op-

erators and solutions to the classical Yang—Baxter equation on a finite-dimensional

semisimple Lie algebra [6]. A connection between associative algebras and the asso-

ciative Yang—Baxter equation, which does not involve any kind of form, was found

by M. Aguiar [1].

Pseudoalgebras defined by B. Bakalov, A. D’Andrea and V.G. Kac in [4] serve as

a natural generalization of conformal algebras involving a cocommutative Hopf alge-

bra H. For H = {e}, we get ordinary algebras and for H = F [∂] we obtain exactly

conformal algebras. A notion of Rota—Baxter operator on (H-)pseudoalgebras was

suggested by L. Liu and S. Wang in 2020 [24]. Note that this definition applied to

conformal algebras differs from the one given by Y. Hong and C. Bai.

Properties and cohomologies of Rota—Baxter operators on Lie conformal alge-

bras were recently studied in [25,28]. In [27], cohomologies of associative conformal

Rota—Baxter algebras were defined.

In [2], A. D’Andrea and V.G. Kac proved the following structure result: Every

simple Lie conformal algebra of finite type is isomorphic either to the Virasoro

conformal algebra Vir or to the current Lie conformal algebra Cur(g) associated to

a simple finite-dimensional Lie algebra g. In [18], the authors showed that there

are no nontrivial Rota—Baxter operators on Vir.

The main goal of the current work is to describe all Rota—Baxter operators

on the remaining simple Lie conformal algebra Cur(sl2(C)) of rank 3. We solve

this problem completely, dealing with zero and nonzero cases separately. Since

the classification of Rota—Baxter operators on sl2(C) was known [20,21,26], we

can trivially extend them onto Cur(sl2(C)). However, we find other Rota—Baxter

operators, that depend on the choice of a polynomial q(∂).
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In [16], all solutions to the classical Yang—Baxter equation on Cur(sl2(C)) were
described. Hence, we may apply the connection established by Y. Hong and C. Bai

to get Rota—Baxter operators of weight 0 on Cur(sl2(C)) corresponding to these

solutions. Doing this, we get all Rota—Baxter operators of weight zero that are

defined with an odd polynomial q(∂).

Let us give a short outline of the work. In §2, we list the required preliminaries

on Lie conformal algebras, the conformal classical Yang—Baxter equation, and

Rota—Baxter operators. For our purposes, we prove more explicit classification

of Rota—Baxter operators of nonzero weight on sl2(C). In §3, we firstly describe

Rota—Baxter operators of weight 0 on Cur(sl2(C)) and then show which of them

come from the solutions to the conformal classical Yang—Baxter equation. In §4, we
classify Rota—Baxter operators of nonzero weight on Cur(sl2(C)). We also provide

examples of Rota—Baxter operators defined on any finite-dimensional semisimple

Lie algebra over C.
Throughout the work, all algebras and vector spaces are considered over the field

of complex numbers.

2. Preliminaries

2.1. Rota—Baxter operators on Lie algebras. Let g be a Lie algebra. A lin-

ear operator R on g is called a Rota—Baxter operator (RB-operator, for short) of

weight k ∈ C if

[R(a), R(b)] = R([R(a), b] + [a,R(b)] + k[a, b]) (1)

for all a, b ∈ g.

Note that given an RB-operator R of weight 0 on a Lie algebra g, the linear

operator αR is again an RB-operator of weight 0 on g for any α ∈ C.
Given a Lie algebra L, we call the operators R = 0 and R = −k · id as trivial

Rota—Baxter operators of weight k on L.

Lemma 2.1 ([17]). Let R be an RB-operator of weight k on a Lie algebra g. Then

ϕ(R) = −(R+ λid) is again an RB-operator of weight k on g.

Lemma 2.2 ([8]). Let g be a Lie algebra, φ be an automorphism of g and R be an

RB-operator of weight k on g. Then R(φ) = φ−1Rφ is an RB-operator of weight k

on g.
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Let a Lie algebra g split as a vector space into the direct sum of two subalgebras

g1 and g2. An operator R defined as

R(a1 + a2) = −ka2, a1 ∈ g1, a2 ∈ g2, (2)

is an RB-operator of weight k on g called a splitting RB-operator [17].

Example 2.3. Let g be a finite-dimensional semisimple Lie algebra over C with

a root system Φ. Let a linear operator R act on g as follows, R(h) = 0 for the fixed

Cartan subalgebra h of g, R(eλ) = −eλ, when λ ∈ Φ+, and R(eλ) = 0 for all

λ ∈ Φ−. Then R is a splitting Rota—Baxter operator of weight 1 on g.

Throughout this paper, let us fix the standard basis e, f, h of sl2(C) such that

[e, f ] = h, [h, e] = 2e, [h, f ] = −2f.

Proposition 2.4 ([20, Prop. 4]). Up to conjugation with an automorphism of sl2(C)
and up to a scalar multiple, we have that a Rota—Baxter operator R of weight 0

on sl2(C) is one of the following:

a) R ≡ 0,

b) R(e) = 0, R(f) = te− h, R(h) = 2e, t ∈ C,
c) R(e) = 0, R(f) = 0, R(h) = h,

d) R(e) = 0, R(f) = h, R(h) = 0,

e) R(e) = 0, R(f) = e, R(h) = 0.

The following result was actually proven in [21] and in [26]. Since it was not

stated in the form in which we are interested, let us prove it directly.

Proposition 2.5 ([21,26]). Up to conjugation with an automorphism, all nontrivial

RB-operators of weight 1 on sl2(C) are the following:

a) R(e) = −e, R(f) = R(h) = 0,

b) R(e) = −(e+ h), R(f) = R(h) = 0,

c) R(e) = −e, R(f) = 0, R(h) = th, t ∈ C \ {0}.

Proof. Let R be an RB-operator of weight 1 on sl2(C). If either ker(R) = (0) or

ker(R+ id) = (0), then R is trivial [11].

Suppose that R is splitting, i. e. sl2(C) = A⊕B, where A and B are subalgebras

of sl2(C) and A = kerR, B = ker(R + id). We may assume that dimA = 2 and

dimB = 1. It is known that up to action of Aut(sl2(C)), A = Span{f, h}. Thus,

B = Span{e + kf + lh} for some k, l ∈ C. Let k = 0, then for l = 0 it is a).

When l ̸= 0 we conjugate with ψ ∈ Aut(sl2(C)) defined as follows, ψ(e) = (1/l)e,

ψ(f) = lf , ψ(h) = h, and get b) for R(ψ).
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Suppose that k ̸= 0. Consider ψ ∈ Aut(sl2(C)) defined as follows,

ψ(e) = e−(k−αl)f−(α/2)h, ψ(f) = f, ψ(h) = h+αf, α = 2(−l+
√
l2 + k).

Then for the RB-operator R′ = ψRψ−1, we have kerR′ = Span{f, h} and ker(R′+

id) = Span{e+
√
l2 + kh}, it is the already considered case.

Suppose that R is not splitting, then dim(kerR) = dim(ker(R + id)) = 1. It is

known (see, e. g. [11]) that the space sl2(C) under the new product

⟨x, y⟩ := [R(x), y] + [x,R(y)] + [x, y] (3)

is again a Lie algebra, and R,R + id are homomorphisms from (sl2(C), ⟨, ⟩) to

(sl2(C), [, ]). Hence, kerR, ker(R+ id) are ideals in (sl2(C), ⟨, ⟩).
Since we work over C, let us consider all possible cases of the Jordan form of R.

Let e2, e3 ∈ sl2(C) be such that R(e2) = 0 and R(e3) = −e3.
Case I: Spec(R) = {0,−1}. Up to the action of ϕ, we may assume that there

exists e1 such that R(e1) = e2. Since both kernels are ideals in (sl2(C), ⟨, ⟩), we
derive by (3),

⟨e1, e2⟩ = [e1, e2] = µe2, ⟨e1, e3⟩ = [e2, e3] = λe3

for some (nonzero) λ, µ ∈ C. Suppose that [e1, e3] = αe1 + βe2 + γe3. Then, due

to the Jacobi identity, we have

0 = [[e1, e2], e3] + [[e2, e3], e1] + [[e3, e1], e2]

= µλe3 − λ(αe1 + βe2 + γe3)− µαe2 + λγe3 = −λαe1 − (λβ + µα)e2 + µλe3.

We get µλ = 0, a contradiction.

Case II: Spec(R) = {0,−1, t}, where t ̸= 0,−1. Let e1 be an eigenvector

corresponding to the eigenvalue t. Again, we write down,

⟨e1, e2⟩ = (t+ 1)[e1, e2] = µe2, ⟨e1, e3⟩ = t[e1, e3] = λe3

for some nonzero λ, µ ∈ C. Suppose that [e2, e3] = αe1 + βe2 + γe3. Then the

Jacobi identity implies β = γ = 0 and λ = −tµ/(t + 1). Considering e2/
√
α and

e3/
√
α instead of e2 and e3, we get the following multiplication table:

[e1, e2] = Λe2, [e1, e3] = −Λe3, [e2, e3] = e1,

where Λ = µ/(t + 1). Also, R(e1) = te1, R(e2) = 0 and R(e3) = −e3. Then R is

the RB-operator from case c) up to conjugation with ψ ∈ Aut(sl2(C)) defined by

the rule ψ(e1) = (Λ/2)h, ψ(e2) =
√

Λ/2e, ψ(e3) =
√
Λ/2f . □
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2.2. Lie conformal algebras. A (free) C[∂]-module L is called a conformal al-

gebra if there is a λ-bracket on L,

[·λ·] : L⊗ L→ C[λ]⊗ L,

satisfying the identities,

[∂aλb] = −λ[aλb], [aλ∂b] = (λ+ ∂)[aλb].

A conformal algebra L is called a Lie conformal algebra if L satisfies the following

conformal analogues of anticommutativity and the Jacobi identity:

[aλb] = −[b−λ−∂a], [aλ[bµc]]− [bµ[aλc]] = [[aλb]λ+µc].

The Virasoro Lie conformal algebra Vir is defined as follows:

Vir = C[∂]L, [LλL] = (∂ + 2λ)L.

Given a Lie algebra g, the current Lie conformal algebra Cur(g) on the space

C[∂]g is defined by the formula

[f(∂)aλg(∂)b] = f(−λ)g(λ+ ∂)[a, b], a, b ∈ g. (4)

A left module M over a Lie conformal algebra L is a left C[∂]-module endowed

with a C-linear map ·λ· : C ⊗M →M [λ] satisfying the identities

∂aλv = −λaλv, aλ∂v = (∂ + λ)aλv, [aλb]λ+µv = aλ(bµv)− bµ(aλv)

for all a, b ∈ L, v ∈M .

Given a Lie conformal algebra L, the space L⊗n is a left L-module under the

action

aλ(a1 ⊗ · · · ⊗ an) =

n∑
i=1

a1 ⊗ · · · ⊗ [aλai]⊗ · · · ⊗ an,

where a, a1, . . . an ∈ L.

A C[∂]-submodule I of L is called an ideal of L if [IλL] ⊂ C[λ] ⊗ I. A Lie

conformal algebra L is of finite type if L is finitely-generated as C[∂]-module. A Lie

conformal algebra L is called simple if [LλL] ̸= (0) and there are only two ideals

of L: (0) and L.

Recall [2] that every simple Lie conformal algebra of finite type is isomorphic

either to Vir or to Cur(g) associated to a simple finite-dimensional Lie algebra g.

Given a Lie algebra g and an automorphism φ of g, we can extend it to an

automorphism of Cur(g) as a ∂-linear operator by the formula φ(f(∂)a) = f(∂)φ(a),

a ∈ g.
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2.3. Conformal classical Yang—Baxter equation. Let L be a Lie conformal

algebra and r =
∑
ai ⊗ bi ∈ L ⊗ L. Set ∂⊗1 = ∂ ⊗ 1 ⊗ 1, ∂⊗2 = 1 ⊗ ∂ ⊗ 1,

∂⊗3 = 1⊗ 1⊗ ∂, and ∂⊗3 = ∂⊗1 + ∂⊗2 + ∂⊗3. The following equation,

[[r, r]] :=
∑

([aiλaj ]⊗ bi ⊗ bj |λ=∂⊗2
− ai ⊗ [ajλbi]⊗ bj |λ=∂⊗3

− ai ⊗ aj ⊗ [bjλbi]|λ=∂⊗2
) = 0 (mod ∂⊗3), (5)

holding in L⊗3, is called the conformal classical Yang—Baxter equation (shortly,

CCYBE) [23] and r ∈ L⊗ L satisfying (5) is called a solution to CCYBE.

The following equation fulfilled for all a ∈ L is called the weak CCYBE:

aµ[[r, r]] = 0 (mod µ = −∂⊗3). (6)

A solution r to CCYBE (or the weak one) is called L-invariant, if the following

equality holds for every a ∈ L,

aλ(r + τ(r))|λ=−∂⊗2 = 0, (7)

where ∂⊗2 = ∂⊗1+1⊗∂ and τ : L⊗L→ L⊗L is defined as follows, τ(a⊗b) = b⊗a.
A solution r to the (weak) CCYBE is called skew-symmetric if r + τ(r) = 0.

In [23], J. Liberati proved that given a Lie conformal algebra L and r ∈ L⊗L, the
map δ(a) = aλr|λ=−∂⊗2 is a cocommutator of a Lie conformal bialgebra structure

on L if and only if r is an L-invariant solution to the weak CCYBE on L.

2.4. Rota—Baxter operators on Lie conformal algebras. Given a Lie con-

formal algebra L, a ∂-linear map R on L is called a Rota—Baxter operator (RB-

operator, for short) of weight k ∈ C [18] if

[R(a)λR(b)] = R([R(a)λb] + [aλR(b)] + k[aλb]) (8)

for all a, b ∈ L.

Given a Lie conformal algebra L, let us call the operators R = 0 and R = −k · id
as trivial Rota—Baxter operators of weight k on L.

In [18], it was shown that there are only trivial RB-operators of weight 0 on Vir.

It is easy to extend this result to the case of RB-operators of nonzero weight.

Example 2.6 ([18]). Let L = C[∂]a⊕ C[∂]b be a Lie conformal algebra of rank 2

with the λ-bracket given by the formulas,

[aλa] = (∂ + 2λ)a, [aλb] = (∂ + λ)b, [bλb] = 0.

Then any Rota––Baxter operator of weight 0 on L is one of the following two forms:

(i) R(a) = −µ(a+ b), R(b) = µ(a+ b), where µ ∈ C \ {0};
(ii) R(a) = g(∂)b, R(b) = 0, where g(∂) ∈ C[∂].
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Given a Lie algebra g and a ∂-linear map R on L = Cur(g), define a linear

operator R0 on g by the rule

R0(ei) = R(ei)|∂=0,

where {ei | i ∈ I} is a linear basis of g. Note that the definition of R0 does not

depend on choice of a linear basis {ei}.

Lemma 2.7. Let L = Cur(g) be a current Lie conformal algebra.

a) Suppose that R is an RB-operator of weight k on L, then R0 is an RB-

operator of weight k on g.

b) Suppose that P is an RB-operator of weight k on g, then the extension of

P on L by the rule P (f(∂)a) = f(∂)P (a), where a ∈ g, is an RB-operator

of weight k on L.

Proof. a) Given a ∈ g, we may present R(a) as follows,

R(a) = R0(a) +
∑
k≥1

∂kRk(a),

where Rk(a) ∈ g. Then the identity (8) written down for a, b ∈ g and λ = ∂ = 0

gives exactly (1).

b) It follows directly from the definitions of RB-operators and λ-product in the

current algebra. □

Analogously to Lemma 2.2, a conjugation R(ψ) of an RB-operator R on a Lie

conformal algebra L with an automorphism ψ of L is again an RB-operator of the

same weight [28].

Corollary 2.8. Let L = Cur(g) be a current Lie conformal algebra, let R be

an RB-operator of weight k on L, and let ψ0 be an automorphism of g. Then

(R(ψ))0 = (R0)
(ψ0), where ψ is a ∂-invariant extension of ψ0 to an automorphism

of L.

3. Rota—Baxter operators of weight 0 on Cur(sl2(C))

Let us give a general example of RB-operators of weight 0 on the current algebra

Cur(g) of a finite-dimensional semisimple Lie algebra g. We will see further that

this construction implies one of two RB-operators on Cur(sl2(C)) which are not

∂-linear extensions of RB-operators on sl2(C).

Example 3.1. Let g be a finite-dimensional semisimple Lie algebra over C. Let

a linear operator R act on L = Cur(g) as follows, R(h) ⊂ C[∂]h for a Cartan
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subalgebra h of g, and R maps all other weighted subspaces to zero. Then R is

a Rota—Baxter operator of weight 0 on L.

3.1. Classification. Let R be an RB-operator of weight 0 on Cur(sl2(C)). Intro-
duce

R(e) = ae(∂)e+ af (∂)f + ah(∂)h,

R(f) = be(∂)e+ bf (∂)f + bh(∂)h, (9)

R(h) = ce(∂)e+ cf (∂)f + ch(∂)h.

Now, we compute by (4),

[R(h)λR(h)] = [(ce(∂)e+ cf (∂)f + ch(∂)h)λ(ce(∂)e+ cf (∂)f + ch(∂)h)]

= 2(ce(λ+ ∂)ch(−λ)− ce(−λ)ch(λ+ ∂))e

− 2(cf (λ+ ∂)ch(−λ)− cf (−λ)ch(λ+ ∂))f

+ (ce(−λ)cf (λ+ ∂)− ce(λ+ ∂)cf (−λ))h;

R([R(h)λh] + [hλR(h)])

= R([(ce(∂)e+ cf (∂)f + ch(∂)h)λh] + [hλ(ce(∂)e+ cf (∂)f + ch(∂)h)])

= 2R((ce(λ+ ∂)− ce(−λ))e+ (cf (−λ)− cf (λ+ ∂))f)

= 2(ce(λ+ ∂)− ce(−λ))(ae(∂)e+ af (∂)f + ah(∂)h)

+ 2(cf (−λ)− cf (λ+ ∂))(be(∂)e+ bf (∂)f + bh(∂)h).

Thus, we obtain the following equations,

ce(λ+ ∂)ch(−λ)− ce(−λ)ch(λ+ ∂)

= ae(∂)(ce(λ+ ∂)− ce(−λ)) + be(∂)(cf (−λ)− cf (λ+ ∂)), (10)

cf (−λ)ch(λ+ ∂)− cf (λ+ ∂)ch(−λ)

= af (∂)(ce(λ+ ∂)− ce(−λ)) + bf (∂)(cf (−λ)− cf (λ+ ∂)), (11)

ce(−λ)cf (λ+ ∂)− ce(λ+ ∂)cf (−λ)

= 2ah(∂)(ce(λ+ ∂)− ce(−λ)) + 2bh(∂)(cf (−λ)− cf (λ+ ∂)). (12)
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Analogously, we get from (8) applied for [R(e)λR(e)] and [R(f)λR(f)] the equalities

2ae(λ+ ∂)ah(−λ)− 2ae(−λ)ah(λ+ ∂)

= ce(∂)(af (λ+ ∂)− af (−λ)) + 2ae(∂)(ah(−λ)− ah(λ+ ∂)), (13)

2af (−λ)ah(λ+ ∂)− 2af (λ+ ∂)ah(−λ)

= cf (∂)(af (λ+ ∂)− af (−λ)) + 2af (∂)(ah(−λ)− ah(λ+ ∂)), (14)

ae(−λ)af (λ+ ∂)− ae(λ+ ∂)af (−λ)

= ch(∂)(af (λ+ ∂)− af (−λ)) + 2ah(∂)(ah(−λ)− ah(λ+ ∂)). (15)

2be(λ+ ∂)bh(−λ)− 2be(−λ)bh(λ+ ∂)

= ce(∂)(be(−λ)− be(λ+ ∂)) + 2be(∂)(bh(λ+ ∂)− bh(−λ)), (16)

2bf (−λ)bh(λ+ ∂)− 2bf (λ+ ∂)bh(−λ)

= cf (∂)(be(−λ)− be(λ+ ∂)) + 2bf (∂)(bh(λ+ ∂)− bh(−λ)), (17)

be(−λ)bf (λ+ ∂)− be(λ+ ∂)bf (−λ)

= ch(∂)(be(−λ)− be(λ+ ∂)) + 2bh(∂)(bh(λ+ ∂)− bh(−λ)). (18)

Let us compare

[R(e)λR(f)] = [(ae(∂)e+ af (∂)f + ah(∂)h)λ(be(∂)e+ bf (∂)f + bh(∂)h)]

= 2(ah(−λ)be(λ+ ∂)− ae(−λ)bh(λ+ ∂))e

− 2(ah(−λ)bf (λ+ ∂)− af (−λ)bh(λ+ ∂))f

+ (ae(−λ)bf (λ+ ∂)− af (−λ)be(λ+ ∂))h;

R([R(e)λf ] + [eλR(f)])

= R([(ae(∂)e+ af (∂)f + ah(∂)h)λf ] + [eλ(be(∂)e+ bf (∂)f + bh(∂)h)])

= R(−2bh(λ+ ∂)e− 2ah(−λ)f + (ae(−λ) + bf (λ+ ∂))h)

= −2bh(λ+ ∂)(ae(∂)e+ af (∂)f + ah(∂)h)− 2ah(−λ)(be(∂)e+ bf (∂)f + bh(∂)h)

+ (ae(−λ) + bf (λ+ ∂))(ce(∂)e+ cf (∂)f + ch(∂)h).
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We get three new identities:

2(ah(−λ)be(λ+ ∂)− ae(−λ)bh(λ+ ∂))

= −2bh(λ+ ∂)ae(∂)− 2ah(−λ)be(∂) + (ae(−λ) + bf (λ+ ∂))ce(∂), (19)

− 2(ah(−λ)bf (λ+ ∂)− af (−λ)bh(λ+ ∂))

= −2bh(λ+ ∂)af (∂)− 2ah(−λ)bf (∂) + (ae(−λ) + bf (λ+ ∂))cf (∂), (20)

ae(−λ)bf (λ+ ∂)− af (−λ)be(λ+ ∂)

= −2bh(λ+ ∂)ah(∂)− 2ah(−λ)bh(∂) + (ae(−λ) + bf (λ+ ∂))ch(∂). (21)

Further, we write down,

[R(e)λR(h)] = [(ae(∂)e+ af (∂)f + ah(∂)h)λ(ce(∂)e+ cf (∂)f + ch(∂)h)]

= 2(ah(−λ)ce(λ+ ∂)− ae(−λ)ch(λ+ ∂))e

− 2(ah(−λ)cf (λ+ ∂)− af (−λ)ch(λ+ ∂))f

+ (ae(−λ)cf (λ+ ∂)− af (−λ)ce(λ+ ∂))h;

R([R(e)λh] + [eλR(h)])

= R([(ae(∂)e+ af (∂)f + ah(∂)h)λh] + [eλ(ce(∂)e+ cf (∂)f + ch(∂)h)])

= R(−2(ae(−λ) + ch(λ+ ∂))e+ 2af (−λ)f + cf (λ+ ∂)h)

= −2(ae(−λ) + ch(λ+ ∂))(ae(∂)e+ af (∂)f + ah(∂)h)

+ 2af (−λ)(be(∂)e+ bf (∂)f + bh(∂)h) + cf (λ+ ∂)(ce(∂)e+ cf (∂)f + ch(∂)h).

We get three new identities:

2(ah(−λ)ce(λ+ ∂)− ae(−λ)ch(λ+ ∂))

= −2(ae(−λ) + ch(λ+ ∂))ae(∂) + 2af (−λ)be(∂) + cf (λ+ ∂)ce(∂), (22)

− 2(ah(−λ)cf (λ+ ∂)− af (−λ)ch(λ+ ∂))

= −2(ae(−λ) + ch(λ+ ∂))af (∂) + 2af (−λ)bf (∂) + cf (λ+ ∂)cf (∂), (23)

ae(−λ)cf (λ+ ∂)− af (−λ)ce(λ+ ∂)

= −2(ae(−λ) + ch(λ+ ∂))ah(∂) + 2af (−λ)bh(∂) + cf (λ+ ∂)ch(∂). (24)
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Finally, we have,

[R(f)λR(h)] = [(be(∂)e+ bf (∂)f + bh(∂)h)λ(ce(∂)e+ cf (∂)f + ch(∂)h)]

= 2(bh(−λ)ce(λ+ ∂)− be(−λ)ch(λ+ ∂))e

− 2(bh(−λ)cf (λ+ ∂)− bf (−λ)ch(λ+ ∂))f

+ (be(−λ)cf (λ+ ∂)− bf (−λ)ce(λ+ ∂))h;

R([R(f)λh] + [fλR(h)])

= R([(be(∂)e+ bf (∂)f + bh(∂)h)λh] + [fλ(ce(∂)e+ cf (∂)f + ch(∂)h)])

= R(−2be(−λ)e+ 2(bf (−λ) + ch(λ+ ∂))f − ce(λ+ ∂)h)

= −2be(−λ)(ae(∂)e+ af (∂)f + ah(∂)h)

+ 2(bf (−λ) + ch(λ+ ∂))(be(∂)e+ bf (∂)f + bh(∂)h)

− ce(λ+ ∂)(ce(∂)e+ cf (∂)f + ch(∂)h).

The last three identities are

2(bh(−λ)ce(λ+ ∂)− be(−λ)ch(λ+ ∂))

= −2be(−λ)ae(∂) + 2(bf (−λ) + ch(λ+ ∂))be(∂)− ce(λ+ ∂)ce(∂), (25)

− 2(bh(−λ)cf (λ+ ∂)− bf (−λ)ch(λ+ ∂))

= −2be(−λ)af (∂) + 2(bf (−λ) + ch(λ+ ∂))bf (∂)− ce(λ+ ∂)cf (∂), (26)

be(−λ)cf (λ+ ∂)− bf (−λ)ce(λ+ ∂)

= −2be(−λ)ah(∂) + 2(bf (−λ) + ch(λ+ ∂))bh(∂)− ce(λ+ ∂)ch(∂). (27)

We can extend any automorphism of sl2(C) to an automorphism of the Lie

conformal algebra L = Cur(sl2(C)). Hence, by Proposition 2.4 and by Corollary 2.8

we may assume that

ae(0) = af (0) = ah(0) = 0, bf (0) = 0, cf (0) = 0. (28)
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Let us derive consequences of these identities. Consider (19), (13), (17), (15), (18),

(23), and (25) respectively with λ+ ∂ = 0:

2ah(∂)(be(∂) + be(0)) = ce(∂)ae(∂), (29)

2ah(∂)ae(∂) = ce(∂)af (∂), (30)

2bh(∂)bf (∂) = cf (∂)(be(∂)− be(0)), (31)

2a2h(∂) = af (∂)ch(∂), (32)

2bh(∂)(bh(∂)− bh(0)) = be(∂)ch(∂) + be(0)(bf (∂)− ch(∂)), (33)

0 = af (∂)(ae(∂)− bf (∂) + 2ch(0)), (34)

ce(0)(ce(∂) + 2bh(∂)) = 2be(∂)(bf (∂)− ae(∂) + 2ch(0)). (35)

Take λ = 0 in (14), (16), and (20) to get

0 = af (∂)(cf (∂)− 2ah(∂)), (36)

be(0)(ce(∂) + 2bh(∂)) = be(∂)(ce(∂)− 2bh(∂) + 4bh(0)), (37)

2bh(∂)af (∂) = cf (∂)bf (∂). (38)

Substituting λ+ ∂ = 0 in (22) and (26), we obtain

a2e(∂)− af (∂)be(∂) + ah(∂)ce(0) = 0, (39)

2b2f (∂)− 2af (∂)be(∂)− ce(0)cf (∂) = 0. (40)

Case I: af (∂) = 0. By (32), we get ah(∂) = 0. By (39), we have ae(∂) = 0.

By (38) and (40), we obtain bf (∂) = 0. By (23) considered at λ = 0, we have

cf (∂) = 0. We have the following system on be(∂), bh(∂), ce(∂), ch(∂) remaining

from the equations (10), (16), (18), (25), (27):

ce(λ+ ∂)ch(−λ)− ce(−λ)ch(λ+ ∂) = 0, (41)

2be(λ+ ∂)bh(−λ)− 2be(−λ)bh(λ+ ∂)

= ce(∂)(be(−λ)− be(λ+ ∂)) + 2be(∂)(bh(λ+ ∂)− bh(−λ)), (42)

ch(∂)(be(−λ)− be(λ+ ∂)) + 2bh(∂)(bh(λ+ ∂)− bh(−λ)) = 0, (43)

2(bh(−λ)ce(λ+ ∂)− be(−λ)ch(λ+ ∂)) = 2ch(λ+ ∂)be(∂)− ce(λ+ ∂)ce(∂), (44)

2ch(λ+ ∂)bh(∂)− ce(λ+ ∂)ch(∂) = 0. (45)

Case IA: ch(∂) = 0. Then bh(∂) = bh(0) ∈ C by (43). By (44), we have

ce(∂) = ce(0) ∈ C and, moreover, ce(0) = 0 or ce(0) = −2bh(0). Excluding the case
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when R = R0, we get

R1(e) = 0, R1(f) = be(∂)e+ αh, R1(h) = −2αe

for some α ∈ C and nonconstant be(∂).

Case IB: ch(∂) ̸= 0. By (41), we have

ce(−λ)
ch(−λ)

=
ce(λ+ ∂)

ch(λ+ ∂)
,

it means that ce(∂) = αch(∂) for some α ∈ C. Thus, by (45), we get bh(∂) =

(α/2)ch(∂). By (44), be(∂) = (α2/2)ch(∂). Therefore, we get the RB-operator:

R2(e) = 0, R2(f) = (α/2)q(∂)(αe+ h), R2(h) = q(∂)(αe+ h).

Case II: af (∂) ̸= 0 and be(∂) = 0. By (29), we have ae(∂)ce(∂) = 0. Thus,

by (30), af (∂)ce(∂) = 0. Since af (∂) ̸= 0, we conclude that ce(∂) = 0.

By (39) and (40), we get ae(∂) = bf (∂) = 0. The equality (38) implies that

bh(∂) = 0. Now we may conjugate R with an automorphism φ such that φ(e) = f ,

φ(f) = e, and φ(h) = −h. So, we move to the case I.

Case III: af (∂) ̸= 0 and be(∂) ̸= 0. By (34) and by (36), we have

cf (∂) = 2ah(∂), (46)

ae(∂) = bf (∂)− 2ch(0). (47)

The last equality implies ch(0) = (bf (0)− ae(0))/2 = 0. So, ae(∂) = bf (∂).

From (38), (46), (30) and the relation ae(∂) = bf (∂), we conclude

2bh(∂)af (∂) = cf (∂)bf (∂) = 2ah(∂)bf (∂) = 2ah(∂)ae(∂) = ce(∂)af (∂),

i. e.,

ce(∂) = 2bh(∂). (48)

The equality (35) considered at ∂ = 0 implies ce(0) = bh(0) = 0.

Therefore, by (39), we have a2e(∂) = b2f (∂) = af (∂)be(∂) ̸= 0. Subtracting (31)

from (29) we obtain, by (48),

ah(∂)be(0) = 0.

Case IIIa: ah(∂) = 0. By (46) and (38), cf (∂) = bh(∂) = 0. Then by (30),

we derive ce(∂) = 0. By (15) considered at λ = 0, we get ch(∂)af (∂) = 0, so,

ch(∂) = 0. By (21) computed at λ+ ∂ = 0, we have be(0)af (∂) = 0, so, be(0) = 0.

Since ae(∂) ̸= 0, we apply (15) to get the equality af (∂) = αae(∂) with some

nonzero α ∈ C. Thus, we obtain the RB-operator R such that

R3(e) = q(∂)(e+ αf), R3(f) = q(∂)((1/α)e+ f), R3(h) = 0.
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Case IIIb: ah(∂) ̸= 0. Then be(0) = 0 and bh(∂) ̸= 0 by (48), since ce(∂) ̸= 0

by (29). By (29) and (30), we get

bh(∂)

ah(∂)
=
bf (∂)

af (∂)
=
be(∂)

ae(∂)
= φ(∂),

where φ(∂) is a rational function on ∂.

By (48), (38), and (21) with λ = 0, we get

2bh(∂)

bf (∂)
=
ch(∂)

ah(∂)
=
cf (∂)

af (∂)
=
ce(∂)

ae(∂)
= 2ψ(∂),

for another rational function ψ(∂). By ce(∂) = 2bh(∂), cf (∂) = 2ah(∂), and bf (∂) =

ae(∂), we get the following form of the matrix [R] of R in the basis e, f, h:

[R] = af (∂)


φ(∂) 1 ψ(∂)

φ2(∂) φ(∂) φ(∂)ψ(∂)

2φ(∂)ψ(∂) 2ψ(∂) 2ψ2(∂)

 .

Denote af (∂) = q(∂). The right hand-side of (11) multiplied by φ(∂) and 2ψ(∂)

coincides with the right hand-side of (10) and (12) respectively. Thus, we get the

equalities

q(−λ)q(λ+ ∂)ψ(λ+ ∂)ψ(−λ)(φ(λ+ ∂)ψ(−λ)− φ(−λ)ψ(λ+ ∂))

= q(−λ)q(λ+ ∂)ψ(λ+ ∂)ψ(−λ)φ(∂)(ψ(λ+ ∂)− ψ(−λ)),

q(−λ)q(λ+ ∂)ψ(λ+ ∂)ψ(−λ)(φ(−λ)− φ(λ+ ∂))

= 2q(−λ)q(λ+ ∂)ψ(λ+ ∂)ψ(−λ)ψ(∂)(ψ(λ+ ∂)− ψ(−λ)).

Simplifying both relations, we obtain

φ(λ+ ∂)ψ(−λ)− φ(−λ)ψ(λ+ ∂) = φ(∂)(ψ(λ+ ∂)− ψ(−λ)),

(φ(−λ)− φ(λ+ ∂)) = 2ψ(∂)(ψ(λ+ ∂)− ψ(−λ)).

Thus, we get

φ(−λ)(ψ(−λ)− ψ(λ+ ∂)) = (2ψ(∂)ψ(−λ) + φ(∂))(ψ(λ+ ∂)− ψ(−λ)).

Suppose that ψ(∂) is not a constant. Then 2ψ(∂)ψ(−λ)+φ(∂) = −φ(−λ). Setting
−λ = ∂, we get ψ2(∂) = −φ(∂). So, ψ(∂)(2ψ(0) − ψ(∂)) = −φ(0). It means that

both rational functions ψ(∂) and φ(∂) are constant, a contradiction.

Thus ψ(∂) = β ∈ C \ {0}, and it is easy to show that φ(∂) = α ∈ C \ {0}.
Summarizing, we get

R4(e) = q(∂)(αe+ f + βh), R4(αe− f) = R4(2βe− h) = 0, α, β ̸= 0.
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Theorem 3.2. Up to conjugation with an automorphism of Cur(sl2(C)) and up

to a scalar multiple, we have that a Rota—Baxter operator R of weight 0 on

Cur(sl2(C)) is either a ∂-linear extension of an RB-operator of weight 0 on sl2(C)
or one of the following for some nonzero q(∂) ∈ C[∂]:

(R1) R(e) = 0, R(f) = q(∂)e+ αh, R(h) = −2αe, α ∈ C;
(R2) R(e) = R(f) = 0, R(h) = q(∂)h.

Proof. Above, we have obtained the RB-operators R1, R2, R3, and R4. The RB-

operator R1 coincides with (R1).

For R2, define an automorphism ψ of sl2(C) as follows:

ψ(e) = e, ψ(f) = f − (α/2)h− (α2/4)e, ψ(h) = αe+ h.

Then ψ−1R2ψ is exactly (R2).

For R3, ξ
−1R3ξ gives again (R2). Here

ξ(e) =

√
αh− e+ αf

2
√
α

, ξ(f) =

√
αh+ e− αf

2
√
α

, ξ(h) =
e+ αf√

α
.

Finally, consider the RB-operator R4. If α + β2 = 0, then π−1R4π equals to

a particular case of (R1), where

π(e) = −β2e+ f + βh, π(f) = e, π(h) = 2βe− h.

Otherwise, θ−1R4θ is exactly (R2). Here

θ(e) =
αe− f + (β +D)(2βe− h)

2iD
, θ(f) =

αe− f + (β −D)(2βe− h)

2iD
,

θ(h) =
αe+ f + βh

D
, D =

√
α+ β2.

□

3.2. Connection with conformal CYBE. In [18], it was shown that every solu-

tion to the conformal classical Yang—Baxter equation on a Lie conformal algebra L

endowed with a non-degenerate symmetric invariant conformal bilinear form gives

rise to a Rota—Baxter operator on L.

Proposition 3.3 ([18, Corollary 3.3]). Let L be a Lie conformal algebra of finite

type, which is free as a C[∂]-module. Suppose that there exists a non-degenerate

symmetric invariant conformal bilinear form on L, and r ∈ L⊗L is skew-symmetric.

Then r is a solution to the CCYBE if and only if P r0 is a Rota—Baxter operator

of weight 0 on L for P r ∈ Cend(R) defined by the formula

⟨r, u⊗ v⟩(λ,µ) = ⟨P rλ−∂(u), v⟩µ. (49)
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Let us clarify which Rota—Baxter operators on L = Cur(sl2(C)) we get from

the solutions to the weak conformal classical Yang—Baxter equation on L.

Theorem 3.4 ([16]). Let L = Cur(sl2(C)), r =
∑
Aql(∂⊗1, ∂⊗2)q ⊗ l ∈ L ⊗ L,

q, l ∈ {e, f, h}, be a skew-symmetric solution to CCYBE. Then Aqq(0, 0) = 0 for

any q and

Afe(0, 0) = −Aef (0, 0) = β, Ahe(0, 0) = −Aeh(0, 0) = α,

Ahf (0, 0) = −Afh(0, 0) = γ

for some α, β, γ ∈ C. Moreover, Aql(x,−x) − Aql(0, 0) = aqlxf(x
2) for a unitary

polynomial f(x) and aq,l ∈ C, and up to the action of Aut(L), we have three cases:

(i) aee = 1, aql = 0 for (q, l) ̸= (e, e), and β = γ = 0;

(ii) ahh = λ ∈ C \ {0}, aql = 0 for (q, l) ̸= (h, h), and α = β = γ = 0;

(iii) aql = 0 for all q, l.

Recall that given a semisimple finite-dimensional Lie algebra g over C, we define
the required form on Cur(g) as follows. Firstly, ⟨a, b⟩λ := ⟨a, b⟩, i. e. the Killing

form on g. Secondly, extend it by the rule

⟨∂a, b⟩λ = −λ⟨a, b⟩λ = −⟨a, ∂b⟩λ, a, b ∈ L.

Such form is invariant, which means that ⟨[aµb], c⟩λ = ⟨a, [bλ−∂c]⟩µ for all a, b, c ∈ g.

We additionally set for a⊗ b, c⊗ d ∈ L⊗ L,

⟨a⊗ b, c⊗ d⟩(λ,µ) = ⟨a, c⟩λ⟨b, d⟩µ.

Let r =
3∑

i,j=1

∑
k,l≥0

γijkl∂
kqi ⊗ ∂lqj be a skew-symmetric solution to CCYBE, here

q1 = e, q2 = f , q3 = h. Take u, v ∈ {e, f, h}, then

⟨r, u⊗ v⟩(λ,µ) =
3∑

i,j=1

∑
k,l≥0

γijkl⟨∂
kqi, u⟩λ⟨∂lqj , v⟩µ

=

3∑
i,j=1

∑
k,l≥0

γijkl(−λ)
k⟨qi, u⟩λ⟨∂lqj , v⟩µ.

Since v is arbitrary and the Killing form is non-degenerate on sl2(C), we have

by (49)

P rλ−∂(u) =

3∑
i,j=1

∑
k,l≥0

γijkl(−λ)
k⟨qi, u⟩λ∂lqj .
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For λ = ∂, we get in terms of the polynomials Aij(∂⊗1, ∂⊗2),

P r0 (u) =

3∑
i,j=1

∑
k,l≥0

γijkl(−∂)
k∂l⟨qi, u⟩λqj =

3∑
i,j=1

Aij(−∂, ∂)⟨qi, u⟩qj .

By Theorem 3.4, we get either an RB-operator which is a ∂-linear extension of an

RB-operator of weight 0 on sl2(C) or both RB-operators (R1) and (R2) with odd

polynomial q(∂).

4. Rota—Baxter operators of weight 1 on Cur(sl2(C))

Let R be an RB-operator of weight 1 on Cur(sl2(C)). We again use the formu-

las (9) and repeat the computations similar to the ones from the case of weight 0.

Thus, we obtain the system:

ce(λ+ ∂)ch(−λ)− ce(−λ)ch(λ+ ∂)

= ae(∂)(ce(λ+ ∂)− ce(−λ)) + be(∂)(cf (−λ)− cf (λ+ ∂)), (50)

cf (−λ)ch(λ+ ∂)− cf (λ+ ∂)ch(−λ)

= af (∂)(ce(λ+ ∂)− ce(−λ)) + bf (∂)(cf (−λ)− cf (λ+ ∂)), (51)

ce(−λ)cf (λ+ ∂)− ce(λ+ ∂)cf (−λ)

= 2ah(∂)(ce(λ+ ∂)− ce(−λ)) + 2bh(∂)(cf (−λ)− cf (λ+ ∂)), (52)

2ae(λ+ ∂)ah(−λ)− 2ae(−λ)ah(λ+ ∂)

= ce(∂)(af (λ+ ∂)− af (−λ)) + 2ae(∂)(ah(−λ)− ah(λ+ ∂)), (53)

2af (−λ)ah(λ+ ∂)− 2af (λ+ ∂)ah(−λ)

= cf (∂)(af (λ+ ∂)− af (−λ)) + 2af (∂)(ah(−λ)− ah(λ+ ∂)), (54)

ae(−λ)af (λ+ ∂)− ae(λ+ ∂)af (−λ)

= ch(∂)(af (λ+ ∂)− af (−λ)) + 2ah(∂)(ah(−λ)− ah(λ+ ∂)), (55)

2be(λ+ ∂)bh(−λ)− 2be(−λ)bh(λ+ ∂)

= ce(∂)(be(−λ)− be(λ+ ∂)) + 2be(∂)(bh(λ+ ∂)− bh(−λ)), (56)
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2bf (−λ)bh(λ+ ∂)− 2bf (λ+ ∂)bh(−λ)

= cf (∂)(be(−λ)− be(λ+ ∂)) + 2bf (∂)(bh(λ+ ∂)− bh(−λ)), (57)

be(−λ)bf (λ+ ∂)− be(λ+ ∂)bf (−λ)

= ch(∂)(be(−λ)− be(λ+ ∂)) + 2bh(∂)(bh(λ+ ∂)− bh(−λ)), (58)

2(ah(−λ)be(λ+ ∂)− ae(−λ)bh(λ+ ∂))

= −2bh(λ+ ∂)ae(∂)− 2ah(−λ)be(∂) + (ae(−λ) + bf (λ+ ∂) + 1)ce(∂), (59)

− 2(ah(−λ)bf (λ+ ∂)− af (−λ)bh(λ+ ∂))

= −2bh(λ+ ∂)af (∂)− 2ah(−λ)bf (∂) + (ae(−λ) + bf (λ+ ∂) + 1)cf (∂), (60)

ae(−λ)bf (λ+ ∂)− af (−λ)be(λ+ ∂)

= −2bh(λ+ ∂)ah(∂)− 2ah(−λ)bh(∂) + (ae(−λ) + bf (λ+ ∂) + 1)ch(∂), (61)

2(ah(−λ)ce(λ+ ∂)− ae(−λ)ch(λ+ ∂))

= −2(ae(−λ) + ch(λ+ ∂) + 1)ae(∂) + 2af (−λ)be(∂) + cf (λ+ ∂)ce(∂), (62)

− 2(ah(−λ)cf (λ+ ∂)− af (−λ)ch(λ+ ∂))

= −2(ae(−λ) + ch(λ+ ∂) + 1)af (∂) + 2af (−λ)bf (∂) + cf (λ+ ∂)cf (∂), (63)

ae(−λ)cf (λ+ ∂)− af (−λ)ce(λ+ ∂)

= −2(ae(−λ) + ch(λ+ ∂) + 1)ah(∂) + 2af (−λ)bh(∂) + cf (λ+ ∂)ch(∂), (64)

2(bh(−λ)ce(λ+ ∂)− be(−λ)ch(λ+ ∂))

= −2be(−λ)ae(∂) + 2(bf (−λ) + ch(λ+ ∂) + 1)be(∂)− ce(λ+ ∂)ce(∂), (65)

− 2(bh(−λ)cf (λ+ ∂)− bf (−λ)ch(λ+ ∂))

= −2be(−λ)af (∂) + 2(bf (−λ) + ch(λ+ ∂) + 1)bf (∂)− ce(λ+ ∂)cf (∂), (66)

be(−λ)cf (λ+ ∂)− bf (−λ)ce(λ+ ∂)

= −2be(−λ)ah(∂) + 2(bf (−λ) + ch(λ+ ∂) + 1)bh(∂)− ce(λ+ ∂)ch(∂). (67)
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By Proposition 2.5 and by Corollary 2.8 we may assume that

af (0) = 0, be(0) = bf (0) = bh(0) = 0, ce(0) = cf (0) = 0. (68)

Theorem 4.1. Up to conjugation with an automorphism of Cur(sl2(C)) we have

that a nontrivial Rota—Baxter operator R of weight 1 on Cur(sl2(C)) is either a ∂-
linear extension of an RB-operator of weight 1 on sl2(C) or the following one for

some nonzero q(∂) ∈ C[∂]:

(Q1) R(e) = −e, R(f) = 0, R(h) = q(∂)h.

Proof. By (55), (56), (58), (60), (61), and (66) considered at λ+ ∂ = 0, we have

af (∂)(ch(∂)− ae(0)) = 2ah(∂)(ah(∂)− ah(0)), (69)

be(∂)(ce(∂)− 2bh(∂)) = 0, (70)

be(∂)ch(∂) = 2b2h(∂), (71)

(ae(∂) + 1)cf (∂) = 2ah(∂)bf (∂), (72)

(ae(∂) + 1)ch(∂) = 2ah(∂)bh(∂), (73)

af (∂)be(∂) = bf (∂)(bf (∂) + 1). (74)

Also, by (63)–(65) with λ = 0, we get

2(ae(0) + 1 + ch(∂))af (∂) = cf (∂)(cf (∂) + 2ah(0)), (75)

2(ae(0) + 1 + ch(∂))ah(∂) = cf (∂)(ch(∂)− ae(0)), (76)

2be(∂)(ch(∂) + 1) = c2e(∂). (77)

Case I: be(∂) = 0. By (71), (74), and (77), we have bh(∂) = bf (∂) = ce(∂) = 0.

By (62), we conclude that ae(∂)(ae(∂) + 1) = 0.

Case IA: ae(∂) = 0. Then the formulas (72) and (73) imply cf (∂) = ch(∂) = 0.

Further, by (75) and (76), af (∂) = ah(∂) = 0, i. e., R = 0.

Case IB: ae(∂) = −1.

Case IBA: cf (∂) = 0. The equalities (75) and (76) give af (∂)ch(∂) = ah(∂)ch(∂)

= 0. If ch(∂) ̸= 0, then af (∂) = ah(∂) = 0 and it is (Q1).

Suppose that ch(∂) = 0. Consider (54) and (55) with λ+ ∂ = 0:

af (∂)(ah(∂)− 2ah(0)) = 0, af (∂) = 2ah(∂)(ah(∂)− ah(0)).

They imply that ah(∂) and af (∂) are constant. Thus, R is defined by Proposi-

tion 2.5.
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Case IBB: cf (∂) ̸= 0. From the equality (51), it follows that ch(∂) = αcf (∂)

for some α ∈ C. By (76), we write down

2ah(∂)ch(∂) = 2αah(∂)cf (∂) = cf (∂)(1 + αcf (∂)).

If α = 0, then cf (∂) = 0, a contradiction. Hence, ah(∂) =
αcf (∂)+1

2α and ah(0) =

1/(2α). By (75), we derive that

af (∂) =
1

2α

(
cf (∂) +

2

2α

)
=
αcf (∂) + 1

2α2
.

Therefore, 0 = af (0) = 1/(2α2), a contradiction.

Case II: be(∂) ̸= 0. Then, by (70), we deduce that ce(∂) = 2bh(∂). Due to (71),

we get ch(∂) = c2e(∂)/(2be(∂)). Finally, we apply this equality to (77),

c2e(∂) = 2be(∂)(ch(∂) + 1) = 2be(∂)

(
c2e(∂)

2be(∂)
+ 1

)
= c2e(∂) + 2be(∂),

a contradiction. □

We may generalize the RB-operator (Q1) from Theorem 4.1 for L = Cur(g),

where g is a finite-dimensional semisimple Lie algebra.

Example 4.2. Let g be a finite-dimensional semisimple Lie algebra over C with

a root system Φ. Let a linear operator R act on L = Cur(g) as follows, R(h) ⊂ C[∂]h
for the Cartan subalgebra h of g, R(eλ) = −eλ, when λ ∈ Φ+, and R(eλ) = 0 for

all λ ∈ Φ−. Then R is a Rota—Baxter operator of weight 1 on L.
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