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ABSTRACT. The classification of quantum P?s was completed by M. Artin et
al. decades ago, but the classification of quadratic algebras that are viewed as
quantum P3s is still an open problem. Based on work of M. Van den Bergh,
it is believed that a “generic” quadratic quantum P3 should have a finite
point scheme and a one-dimensional line scheme. Two families of quadratic
quantum P3s with these geometric properties are presented herein, where each
family member has a line scheme that is either a union of lines or is a union of
a line, a conic and a curve. Moreover, we prove that, under certain conditions,
if A is a quadratic quantum P3 that contains a subalgebra B that is a qua-

dratic quantum P2, then the point scheme of B embeds in the line scheme of A.
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Introduction

An AS-regular algebra of global dimension n 4 1 is viewed by many researchers
as being a noncommutative (or quantized) analogue of the polynomial ring on
n -+ 1 variables. For this reason, such an algebra is often called a quantum P".
Although the classification of quantum P?s was completed many years ago (cf.
[1,2,3,20,21,22]), the classification of quantum P3s remains an open problem. Given
the large role played by the geometric techniques developed by M. Artin, J. Tate and

M. Van den Bergh in their seminal papers [2,3] in the classification of quantum P?s,
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it is reasonable to expect that similar geometric techniques will play an analogous
role in the classification of quantum P3s. Hence, identification of any geometric
properties satisfied by quantum P3s, or by “generic” quadratic quantum P3s, is
desirable.

Based on unpublished notes of M. Van den Bergh, and as explained in [25,
Section 1D], a “generic” quadratic quantum P2 has a one-dimensional line scheme,
and has defining relations whose zero locus consists of twenty points (counted with
multiplicity). In particular, such an algebra has at most twenty nonisomorphic
point modules. Additionally, in [7], it is proved that if the line scheme of a quadratic
quantum P3 has dimension one, then, when viewed as a subscheme of P? via the
Pliicker embedding, the line scheme has degree twenty. This raises the question
(posed by S. P. Smith to the authors) of whether or not there could exist a quadratic
quantum P?3 that has a finite point scheme while simultaneously having a line scheme
consisting of a union of lines.

Addressing Smith’s question is one of our main objectives in this article, and
we answer the question in the affirmative, in Section 3, while computing, in Theo-
rems 3.1 and 3.5, the line scheme of algebras that belong to two families of quadratic
algebras whose members are candidates for being “generic” quadratic quantum P3s.
Indeed, via the Pliicker embedding, we exhibit the line scheme of the algebras as
a subscheme of P, showing that, for the algebras in one family, the line scheme
is the union of ¢ lines, where ¢ € {3, 4}, and that, for the algebras in the other
family, the line scheme is the union of a line, a conic and a curve. In so doing, we
accomplish one of our other main objectives which is to add to the few examples in
the literature (cf. [5,6,9,19,24]) of quadratic algebras that are candidates for being
“generic” quadratic quantum P3s.

Moreover, the algebras in the two families we study are Ore extensions of cer-
tain quadratic quantum P2s, and we noticed that the point scheme of the quadratic
quantum P? in each case is embedded in the line scheme of the quadratic quan-
tum P3. This observation led to Theorem 1.4 proving that this behavior is not a
coincidence.

The paper is outlined as follows. Section 1 lays out some notation to be used
throughout the article, and presents the two families of algebras to be studied
herein. The algebras first appeared in [23], so some results from [23] are reviewed
in Section 1. In the second half of the section, we prove Theorem 1.4, showing

that, under certain conditions, if a quadratic quantum P3 contains a quadratic
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quantum P2 as a subalgebra, then the point scheme of the quadratic quantum P?
embeds in the line scheme of the quadratic quantum P3.

In Section 2, we compute the point scheme, in Proposition 2.1, of the algebras
presented in Section 1, and, in Section 3, we compute their line schemes in The-
orems 3.1 and 3.5. We describe which lines in P3 are parametrized by the line
schemes in Corollaries 3.3 and 3.7.

This article is based on the Ph.D. dissertations, [13,15], of the first and third
authors and on Chapter 3 of the Ph.D. dissertation, [14], of the second author.

Hence, some details have been omitted that can be found in [13,14,15].

1. Two families of quadratic quantum P3s

In this section, we introduce some notation to be used throughout the article,
and present two families of quadratic AS-regular algebras that are candidates for
being generic quadratic quantum P3s. In Section 1.2, in Theorem 1.4, we prove
that, under certain conditions, if b is a quadratic quantum P2 that is a subalgebra
of an algebra, a, that is a quadratic quantum P3, then the point scheme of b embeds
in the line scheme of a.

Throughout the article, k denotes a field. After this section, we will impose the
additional assumptions that k be algebraically closed and satisfy char(k) = 0. The
dual of any finite-dimensional k-vector space W will be denoted by W*. For any
nonzero ring R, we write R* to denote the subset of all units in R, whereas for
1 € Z and any Z-graded k-algebra R, we write R; for the span of the homogeneous
degree-i elements in R. The scheme-theoretic zero locus in P™ of homogeneous
polynomials fi, ..., f, will be denoted by V(f1,..., fr)-

1.1. Two families of algebras. In this subsection, we present the two families
of AS-regular algebras of global dimension four that were introduced in [23]. In
particular, let A denote the k-algebra on four generators, x1, x2, 3, T4, subject to

the defining relations

Tox, = —X1T9, T4T1 = —T1Tq4+ x% + bm%,
T3T, = T3, T4Te = —Tox4+ 2% + da3, (1.1)
T3Ty = T2, T4r3 = X3T4+ T1T2,

where b € k* or d € k*. In fact, A is a member of the 4-parameter family of algebras
given in [23, Proposition 2.1], and we have taken two of the parameters (a and ¢) in

that family to be zero (and retained the name of the other two parameters for any
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readers who wish to compare A with the algebras in [23, Proposition 2.1]). By [23,
Proposition 2.1], A is a noetherian, AS-regular domain of global dimension four, is
an infinite module over its center, has a finite point scheme consisting of at most five
closed points, and has a line scheme of dimension one. Moreover, in the proof of [23,
Proposition 2.1], it was established that A is an Ore extension, A'[z4; o, d], of the
subalgebra A’ that is generated by x1, z9, 23, where o € Aut(A’). In particular,
A is a free A’-module, so it follows that the defining relations of A’ are given by the
three relations in (1.1) that do not use x4, and so A’ is a quadratic quantum P2
with point scheme given by the “triangle” V(z1z223) C P2.

For the second family, let B denote the k-algebra on four generators, x1, 2, T3, 24,

subject to the defining relations

ToT1 = —X1X9+ 2:c§, Tar1 = —X1%4 + x% + Az173,

T3r] = T1T3, T4y = —Toms+ a7+ (N —2)zomws, (1.2)
_ _ 2

T3Ty = T2x3, T4T3 = T3Ty+ T1T2 — X5,

where A € k. Analogous to the situation for A, the algebra B is a member of the
5-parameter family of algebras given in [23, Proposition 2.2], and we have taken
four of the parameters to be zero. By [23, Proposition 2.2], B is a noetherian,
AS-regular domain of global dimension four, is an infinite module over its cen-
ter, has a finite point scheme consisting of exactly seven closed points, and has a
line scheme of dimension one. Moreover, as mentioned in [23], B is an Ore ex-
tension, B’[z4; o, 0], of the subalgebra B’ that is generated by z1, 2, 23, where
o € Aut(B’). In particular, B is a free B’-module, so it follows that the defining
relations of B’ are given by the three relations in (1.2) that do not use x4, and so
B’ is a quadratic quantum P?, with point scheme given by the union of a line and
a conic, namely V(x3) U V(2122 — 23) C P2,

Before proceeding, we make the observation in our next result that each of the

algebras A and B encode some symmetry.

Lemma 1.1. Writing A as A(b, d) and B as B()), we have that A(b, d) = A(d, b)
for allb, d € k, and B(A) =2 B(2— \) for all X € k.

Proof. Let V =}, _,,kz;, so Ay =V = By. The linear map ¢ : V — V given
by

Tl T2, To — X1, T3 — —I3, Ty > T4,

induces an isomorphism from A(b, d) to A(d, b), for all b, d € k, and, similarly,
induces an isomorphism from B()A) to B(2 — \), for all A € k. O
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Owing to Lemma 1.1, we henceforth take d # 0 in all discussions regarding the
algebra A, and X\ # 0 in all discussions regarding B.

The algebras A and B were presented in [23] since each algebra is an example
of a quadratic AS-regular algebra of global dimension four that is not a finite
module over its center, yet the algebra has a finite point scheme with a finite-order
automorphism acting on the point scheme. This was discussed in detail in [10], in
which the fat-point modules over A and B were computed and found to exhibit an

automorphism of infinite order.

1.2. Point schemes embedded in line schemes. Before concluding this sec-
tion, we prove in Corollary 1.5 that the point scheme of A’ (respectively, B’) is
contained in the line scheme of A (respectively, B), and that this containment is a
special case of a more general result, namely Theorem 1.4. Our results on this issue
build on results in [13, Section 4.4]. We remind the reader that the point scheme (re-
spectively, line scheme) is the scheme that represents the functor of point modules
(respectively, line modules); cf. [2,18]. We refer to the reduced variety of the point

scheme (respectively, line scheme) as the point variety (respectively, line variety).

Lemma 1.2. Suppose that a is a Z-graded k-algebra that contains a Z-graded sub-
algebra b such that b1 C a1, where dim(by) = 3 and dim(a;) = 4. If u, v € by
satisfy dim(uby +vby) <5, then dim(ua; +vay) < 7.

Proof. With the given hypotheses, we may write a; = b; @ kw for some w €
a; N\ by. It follows that ua; + va; = uby + vb; + kuw + kvw. Thus,

dim(ua; +vay) < dim(uby + vby) + dim(kuw + kow) < 5 + 2,

which yields the result. (I

Proposition 1.3. Suppose a is a quadratic Auslander-reqular algebra of global di-
mension four that satisfies the Cohen-Macaulay property with Hilbert series Hy(t) =
1/(1 —t)*. If a contains a quadratic AS-regular subalgebra b of global dimension

three, where by C a1, then the point variety of b embeds in the line variety of a.

Proof. Let M denote a right point module over b. Since b is a quadratic AS-

regular algebra of global dimension three, we have M =2 where u, v € b; are

b
ub+vb’
linearly independent and dim(ub; + vb;) = 5. The Hilbert series of a implies that
dim(ay) = 4, so Lemma 1.2 implies that dim(ua; + vay) < 7. Since a is connected
and Auslander regular, it follows from [11, Theorem 4.8] that a is a domain. Thus,

ua; Nvay # {0}, so [12, Proposition 2.8] implies that ;%= is a line module over a.
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In other words, the point V(u, v) C P? corresponds to a point module over b, while
the line V(u, v) C P? corresponds to a line module over a, which completes the

proof. O

In Proposition 1.3, if p belongs to the point scheme of b, then the image of p in
the line scheme of a could conceivably have multiplicity lower than that of p. The

following result shows that this situation cannot arise.

Theorem 1.4. Under the hypotheses of Proposition 1.3, we have that the point

scheme of b embeds in the line scheme of a.

Proof. Our method of proof builds on the proof of Proposition 1.3 by using the
notion of a family of point (respectively, line) modules, M = @;>¢M;, parametrized
by S = Spec(R), where R is a commutative k-algebra, as discussed in [2, Section 3].
In other words, in our setting, M is a graded module over the algebra R ®y b
(respectively, R ® a). In fact, since M is either a family of point modules or
line modules, we have My = R, so M is compatible with descent, which implies
that we may assume that R is a commutative local k-algebra, and that M; is a
free R-module of rank one (respectively, rank ¢ 4+ 1), for all i. Thus, we consider

the module M, from the proof of Proposition 1.3, as determining a point module

R®xb : L.
W[v(l@kb) over R®y b, and, using the proof of Proposition 1.3, we produce
a line module % over R ®y a, thereby showing that a family of

point modules over b is determining a family of line modules over a. The result
follows. 0

Corollary 1.5. With A, A’, B, B’ as defined in Section 1.1, the point scheme of A’
(respectively, B') embeds in the line scheme of A (respectively, B).

Proof. Since A is an Ore extension of A’, A’ is a subalgebra of A, and similarly

for B and B’. The result follows by applying Theorem 1.4. O

The embedding maps that are intrinsic to Corollary 1.5 are described in greater
detail in Remarks 3.4 and 3.6.

2. The point schemes of A and B

Henceforth, we impose the additional assumption that k be algebraically closed
and satisfy char(k) = 0. Although a count was provided in [23] for the total number

of distinct points in the point scheme of A, and in the point scheme of B, the actual
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point schemes were not computed in [23]. Thus, in this section, we determine the
point scheme of the algebra A in Proposition 2.1 and the point scheme of the
algebra B in Proposition 2.2.

It will be convenient to write V' = A; (respectively, V = Bj) and identify P3
with P(V*).

Proposition 2.1. Suppose d # 0, and let 0;; denote the Kronecker-delta symbol,
where i, j € k. The point scheme, Py C P3, of A consists of
(a) e =(0,0,0, 1) =V(x1, z2, x3) with multiplicity 16 + 200, and
(b) two distinct points of the form (2d, 0, a1, —b), where o3 = —4d and each
point has multiplicity one, and
(¢) 2(1 — 6qp) distinct points of the form (0, 2b, az, —d), where a3 = —4b and
each point has multiplicity one.
In particular, all the points lie on the union V(z1x9w3) C P3 of the first three

coordinate planes.

Proof. Following the method in [2], we write the defining relations (1.1) of A

as Mz, where M is the 6 x 4 matrix

[ To T 0 0 ]
T3 0 —x1 0
0 T3 —T9 0
vy —To —brs 17 ’
—x1 x4 —dxs X9
i 0 —x1 Ty —Z3
and z is the column vector given by the transpose of [z1,...,24]. As explained

in [2], the point scheme of A can be computed as a subscheme of P? by finding the

zero locus of the 4 x 4 minors of M. Three of the 4 x 4 minors are:
3,,.2.2, .3 3,,.2.2 3 3 3, .3 3
broxs +xirs + 2523, —dxixs+rir; —xiTs, —bxors +drizs+ i3 —x5Ts,

which sum to 4z2x3. We first address finding the closed points of the point scheme,
after which we compute the multiplicity of the points.

Considering where 1 = 0 = x5, we find that, since d # 0, there is only one
solution, namely the point es = V(x1, za, 23). On the other hand, considering
where z1 = 0 # w2, we find that if 6 = 0, then there is no solution, whereas if
b # 0, then we have 23 + bx3 = 0 = dxa + 2bxy. This latter case, where b # 0,
yields two distinct solutions, namely (0, 2b, £2v/—b, —d). Turning to the case
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where x1 # 0 = x9, we find that, since d # 0, we may use the isomorphism from
Lemma 1.1 to reveal exactly two distinct points, namely (2d, 0, +2v/—d, —b).

In order to find the multiplicity of any point in P4, we need to consider the
coordinate ring R = k[x1,...,24]/J of P4, where J is the ideal generated by the
4 x 4 minors of the matrix M. In particular, when computing the multiplicity at
p € P4, we consider the localization R, of R at p.

If b # 0, then x5 and x3 are both nonzero at the point p = (0, 2b, aa, —d),
where a3 = —4b. Moreover, x 2275 € J, so the image of 77 in Ry is zero. By
inverting z, the remaining elements of J imply that 2X4 — dX2 and bX3 + 1 are
zero in Ry, where X; denotes the image of z; in Ry, for i € {3, 4}. It follows that
dim(R,) < 2. However, since bX? + 1 vanishes at two distinct points in Py, we
have that dim(R,) = 1, so p has multiplicity one. By using Lemma 1.1, we deduce
that the multiplicity of (2d, 0, a1, —b), where o = —4d, is also one.

Since P4 is finite, an unpublished result of M. Van den Bergh (cf. [25, Sec-
tion 1D]) implies that the sum of the multiplicities of all the points in P4 is twenty,
and hence the multiplicity of e4 is as claimed in the statement, which concludes the
proof. (Alternatively, the reader is referred to [13, Pages 20-21] and [14, Page 28] for
details concerning explicit computation of the multiplicity of e4. However, in [13],
the last exponent in the first polynomial on the last line of Page 20 should be 3,
not 2.) O

Proposition 2.2. The point scheme, Pg C P3, of B consists of
(a) e =(0,0,0, 1) =V(x1, x2, x3) with multiplicity 14, and
(b) siz distinct points of the form (2a2(a® +2), 2a, 2, a® + \), where
a8 +20% — 1 =0 and each point has multiplicity one.

In particular, all seven points lie on the singular quadric V(x1z9 — 23) C P3.

Proof. Following the proof of Proposition 2.1, the defining relations (1.1) of B

may be written as Mz, where M is the 6 X 4 matrix

X2 X1 —2x3 0
T3 0 —T7 0
0 I3 —x2 0
T4 —T2 —>\l‘1 I ’

—X1 Xq (2 — )\)1‘2 i)

0 —x1 x3+x4 —T3
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and z is the column vector given by the transpose of [x1, ..., z4]. One of the 4 x4 mi-
nors of M is (z129 — x3)x3, while another three 4 x 4 minors of M belong to z3x5 +
wsklzy, ..., mq], —2F + (kzo +kaz)k[z1, ..., 24] and —23 + (kay +kas)k[xy, ..., z4].
It follows that if z3 = 0, then 21 = 0 = x5, yielding the point eq = V(x1, 2, x3)
as a solution. On the other hand, inverting x3, the ideal generated by the images

of the 4 x 4 minors of M is generated by
X, — X5 —2X2, 2X,— X3 -\ and X§42X5 —1,

where X; is the image of x;, for all ¢ # 3, in the ring obtained by inverting xs.
Comparing the latter polynomial with its derivative (given that char(k) = 0), we
find that there are six distinct solutions for Xs. Thus, if x3 # 0, then there are six

distinct points of the form
(202 (a® 4+ 2), 2a, 2, &® + ),

where a8 + 202 — 1 = 0. Moreover, our discussion implies that the coordinate ring
of Pg\_{e4} is isomorphic to
k[X]
(X6 42X3 —1)’
which has dimension six, so each of the six distinct points has multiplicity one.
Appealing to the unpublished result of M. Van den Bergh that was mentioned in
the proof of Proposition 2.1 completes the proof. O

3. The line schemes of A and B

A method for computing the line scheme of a quadratic AS-regular algebra of
global dimension four on four generators with six relations is given in [19]. For the
algebra A, the method is described in [13] and, for the algebra B, the method is
described in [15]. In this section, Theorems 3.1 and 3.5 identify the line schemes
of A and B when viewed via the Pliicker embedding. In particular, the line scheme
of A is the union of ¢ lines, where ¢ € {3, 4}, and the line scheme of B is the union
of a line, a conic and a degree-8 curve. Corollaries 3.3 and 3.7 describe the lines
in P3 that are parametrized by the line schemes of A and B.

We continue to assume that k is algebraically closed and satisfies char(k) = 0.

The method in [19] for computing the line scheme of a quadratic AS-regular
algebra of global dimension four on four generators with six relations entails the
following. One finds the Koszul dual, D, of the quadratic algebra, and writes the
defining relations of D using a 10 x 4 matrix M, and then forms a 10 x 8 matrix

by juxtaposing M evaluated at an arbitrary element of V' with M evaluated at
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a potentially different arbitrary element of V. The method then requires one to
compute the 45 8 x 8 minors of the 10 x 8 matrix. After substituting Pliicker
coordinates Mio, My3, My4, Mas, Moy, Mss into the 45 minors, one seeks the zero
locus of the ideal generated by the 45 polynomials so obtained together with the

quadratic Pliicker polynomial,
D = MioMsy — M3 Moy + M4 Mog.

For the algebra A (respectively, B), we denote the ideal generated by these 46 poly-
nomials as J4 (respectively, Jp).

Using the above Pliicker coordinates, in accordance with the recipe in [19],
has the advantage of allowing us to carry information from the line scheme back
to P(V*). In particular, if p = (p1,...,ps) and q = (g1, .. -, qs) are distinct points
in P(V*), then M;; (where 1 <i < j < 4) can be taken to be the 2 x 2 minor using

columns 7 and j from the 2 x 4 rank-2 matrix

P1 P2 P3 Pa
q1 92 43 g4

We view this 2 x 4 rank-2 matrix as representing the line in P(V*) that passes
through p and g, and it corresponds to a point on the Grassmannian, V(p), of all
lines in P3. This description of lines in P3 via Pliicker coordinates and the 2 x 4
matrices is called the Pliicker embedding. For example, viewing the line scheme of
the polynomial ring, k[z1,...,24], in P? via the Pliicker embedding yields its line
scheme to be V(p).

It was proved, in [7], that if the line scheme of a quadratic quantum P3 has
dimension one, then, when viewed as a subscheme of P® via the Pliicker embedding,
the line scheme has degree twenty. As mentioned in the Introduction, this raises the
question (posed by S. P. Smith to the authors) of whether or not there could exist
a quadratic quantum P? that has a finite point scheme while simultaneously having
a line scheme consisting of a union of lines, when viewed via the Pliicker embedding
in P°. The next result addresses this question in the affirmative by showing that
the algebra A, with the restrictions imposed on the parameters in Section 1.1, has
a line scheme that is a union of lines. It is still an open question whether or not
a quadratic quantum P? could have a line scheme that is a union of 20 distinct
lines. It is also an open question as to what the line scheme of a generic quadratic
quantum P3, or of classes of generic quantum P3, is likely to be, although a few

examples are provided in [5,6,9,19,24].
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Theorem 3.1. If d # 0, then the line scheme, L4, of A has dimension one. In
this case, viewing L4 as a subscheme of P° via the Pliicker embedding, the reduced

variety of L is a union of lines. More precisely, writing

Ly =V(Mia, Mz, Mas, M) C P,
Ly = V(Ma, Mis, Moy, May) C P,
Lz =V(Mia, Mz, Mas, M) C P,

Ly =V(Mya, dMiz —bMsz, dMiy — bMoy, (b* 4 d®) Mas — 2bd> Ms4) C PO,

we have

(a) Lo =Ly ULyULs, if b =0, where L1, Ly and L3 have multiplicities 8, 6
and 6 respectively, and

() La=L1ULyUL3U Ly, if b # 0, where L; has multiplicity 6 fori <3 and
L4 has multiplicity 2.

Moreover, L; N L; is nonempty whenever ¢, j < 3 or i, j > 3, whereas, if b # 0,
then L; N Ly is empty for i < 2.

Proof. By [7, Proposition 3.2], if dim(£4) = 1, then every irreducible component
of £4 has dimension one; in particular, there are no embedded components. We
first compute the closed points of L4, after which we discuss the multiplicities of
the points. For any omitted details, the reader is referred to [13,14].

For arbitrary b and d, the 45 polynomials obtained from the 10 x 8 matrix
discussed above are provided in [13, Section 6.2.2] and, for b = 0, they are provided
in [14, Section 6.2]. In seeking the reduced variety of L4, we note that, since one
of the polynomials is M, we may assume that Mjs = 0. With the assumption
that d # 0, a Grobner basis computed with Wolfram’s Mathematica, [16], on the
generators of Jy + (Mis) yields that either dMi3 = bMas or that Mys = 0 = Moas.
In the latter case, we find that My4MoyMsz4 = 0, which proves that L; C L4 for all
i < 3, and no other solutions exist in this case. In the case where dMi3 = bM>3,
we may assume that Moz # 0, so another Grébner basis computation reveals that
dMiy = bMyy and (b® + d*) Mag = 2bd? M4, which gives us precisely Ly. It follows
that the first two assertions and part of the third assertion in the statement are
proved.

By Lemma 1.1, in order to compute the multiplicity of the points that lie on

only one component of L4, it suffices to consider such points on Lo and L3 only.
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Let p € Lo\ _L; for all i # 2. In homogeneous coordinates, p may be written as
p=1(0,0,1,0,0,7),
for some v € k™. We wish to intersect Lo at p with a hyperplane V(f), where
[=Mss — yMis + 1Mz + B2 Mg + B3 Mas + BaMoa,

for some (,...,084 € k. For this purpose, we first localize by inverting My, and
substitute for Moz using the image of p in the localized ring. Our method at this
stage entailed using Mathematica to compute different Grobner bases in order to
find a dozen or so elements in J4 that are of the form gh, for some polynomials g
and h, where g|, # 0. Each time, the factors given by h were appended to the
list of generators. Once this process stopped yielding such elements gh, we then
used the image of f in the localized ring in order to substitute for Ms,, while
removing our earlier substitution for Mass from the computation (but the image
of p in the localized ring is an element of the image of J4 in the localized ring,
so that information is not lost). After computing another Grobuner basis, it was
found to have a zero locus that contained only p. The ideal, Ja, generated by this
last Grobner basis was generated by three polynomials in two variables, and the

quotient ring was isomorphic to k[y, z](,, ) modulo the ideal generated by
v, 4% = (@ Dy
29%y" + (Bad + 2827 + Ba)y* — 49°yz,

so the quotient ring has dimension at most six. A computation using SINGULAR, [8],
verified the dimension to be six, and so did a computation with the Affine package
in Maxima, [17]. In fact, the latter revealed that the only denominator used in the

2

application of Bergman’s Diamond Lemma was 4y~ <, which is nonzero. It follows

that the multiplicity of any point of L, that lies on only L is six.
The procedure is very similar for the computation of the multiplicity of any point

of L3 that lies on only L3. In this case, we take the point
p=1(0,0,7,0,1,0),
for some v € k*. For the hyperplane V(f) this time, we use
= Mg —yMay + B1 Mz + B2 Mis + B3 Mas + BaMsa,

for some f1,..., 84 € k. As in the case of Lo, this time the ideal Ja was again gen-

erated by three polynomials in two variables, and the quotient ring was isomorphic
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to k[y, 2]y, -y modulo the ideal generated by
¥’ 2% — (b7 — 2bdy + d*¥7)yt,

dyyz + 2y(b — dv)y® + d(27B5 + 272 B2 + ¥ B + Ba)y?,

so again the quotient ring has dimension at most six. A computation using SINGU-
LAR, [8], verified the dimension to be six, and so did a computation with the Affine
package in Maxima, [17]. In fact, the latter revealed that the only denominator
used in the application of Bergman’s Diamond Lemma was 4y, which is nonzero.
It follows that the multiplicity of any point of L3 that lies on only Lj is six.

If b # 0, then Lemma 1.1 implies that the multiplicity of L; is six, in which case
the multiplicity of L4 is 20 — 18 = 2, by [7, Proposition 3.2] (see Remark 3.2(b)).
On the other hand, if b = 0, then the multiplicity of L is 20 — 12 = 8. (This latter
case highlights that, if b = 0, then L, degenerates into L; and adds its multiplicity
from the case where b # 0 to the multiplicity of L;.)

The proof of the last assertion in the statement is left to the reader. O

Remark 3.2.
(a) If b = —d, then the defining polynomials of L4 are symmetric in b and d. If
b # —d, then the last polynomial defining L4 can be replaced by

(b* — bd + d*) (M3 + Mas) — 2bd M3y

(since
(b3 + d*) My — 2b°dMsy
belongs to the ideal that determines the line Ly4), which is again symmetric
in b and d.
(b) If one wishes to compute explicitly the multiplicity of L4 in Theorem 3.1(b),
one should likely change coordinates first as follows in order to help choose
the hyperplane V(f):

Mis +— X1, M3 +— (XQ + bXs)d_l,
M23 — X5, M14 —> (Xg + bXﬁ)dil,
Moy — X, M3y — ((b3 + dg)X5 — X4)b_1d_2/2.

Consequently, one may choose f = X¢ — sX5 — >, 4 3iX;, where s, (1,
..,B4 € k. In this case, one can reduce the number of variables to one,
say y, and compute the ideal Ja (cf. the proof of Theorem 3.1 for notation)

to be (y?), so the quotient ring has dimension two, as expected.



14 1. C. LIM, J. E. LOZANO, A. MASTRIANIA AND M. VANCLIFF

(¢) As mentioned in Section 1.1, the algebras A belong to a 4-parameter family
of algebras introduced in [23, Proposition 2.1]. The line scheme of the larger

family is computed in [13, Theorem 3.3.1].

Corollary 3.3. Let Ly,...,L4 be as in Theorem 3.1 concerning the line scheme
of A. Fori < 3, the lines in P that are parametrized by L; are those that lie on the
plane V(x;) and pass through the point V(z1, xa, x3) = eq. If b, d € k™, then the
lines in P3 that are parametrized by Ly are those that lie on the plane V(dz1 — bxz)

and pass through the point
V(zs, dxy —bry, b2xy + d’xe + 2bdxy).

Proof. The proof uses the description of the lines using Pliicker coordinates and
the 2 x 4 matrices discussed at the start of this section. Details can be found in
[13, Section 4.2]. O

Remark 3.4. In view of our last result, we can see how Corollary 1.5 embeds the
point scheme V(z1x223) of A’ into the line scheme of A. More precisely, for ¢ < 3,
the line V(x;) in P? embeds in the line scheme of A as the line L; from Theorem 3.1.
Moreover, the plane that houses the point scheme of A’ can be identified with the
plane V(Ma, My, Maz) C P5.

Theorem 3.5. The line scheme, Lp, of B has dimension one. If A # 0, then,
viewing Lp as a subscheme of P° via the Pliicker embedding, the reduced variety

of Lp is the union of a line L, a conic C7 and a degree-8 curve Cy, where
L = V(M2, Mz, Moz, Msy) C P,
Cy = V(Myz, Mys, Mas, MyyMyy — M3,) C P°,
and the affine open subset of Ca where the first coordinate is nonzero is given by

V(Mo — 1, 2My3Mos + 1, Myy — (M35 — 2M5 + (A — 2) M),
(3.1)
Moy — 5(2M35 + AMag — M3), Msy + M3y + Mz + 1) C A,
As subschemes of Lg, L has multiplicity four, C1 has multiplicity four and Cy has
multiplicity one. Moreover, LNCy = LNCy=C1NCy=LNV(M4Msy).

Proof. Asin the proof of Theorem 3.1, if dim(L5) = 1, then there are no embedded
components. We first compute the closed points of Lpg, after which we discuss the
multiplicities of the points. For any omitted details, the reader is referred to [15],

where the case A = 2 is discussed.
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In seeking the reduced variety of L, we note that, for points where M, is zero,

we also have
M3 =0 = Mo and M3 (Mg Moy — M§4) =0,

which shows that LU Cy C Lg N V(Mi2). Moreover, there are no other solutions
in this case. On the other hand, if M5 # 0, then inverting M;s and computing a
Grobuer basis (with standard lexicographical ordering) shows that the remaining
points of Lp yield Cy. It follows that the first two assertions in the statement are
proved.

Let p € L\ (C7 U Cs). In homogeneous coordinates, p may be written as
p=1(0,0,1,0,n, 0),
for some v € k*. We wish to intersect L at p with a hyperplane V(f), where
[ = May —yMyg + p1 Mg + B2 My + B3 Mas + BaMsy,

for some f1,...,84 € k. Using the same method as that employed in the proof of
Theorem 3.1, and after computing a Grébner basis that has zero locus containing
only p, we find that the ideal, J B, generated by this last Grobner basis is gener-
ated by three polynomials in two variables, and the quotient ring is isomorphic to

k[y, 2]y, -y modulo the ideal generated by
y37 (,73 + 1)y2 _ 2,}/2y27 47422 _ (76 + 473 + 1)y27

so the quotient ring has dimension at most four. A computation using SINGULAR,
[8], verified the dimension to be four, and so did a computation with the Affine
package in Maxima, [17]. In fact, the latter revealed that the only denominators
used in the application of Bergman’s Diamond Lemma were elements of kX~
which are nonzero. It follows that the multiplicity of any point of L that lies on
only L is four.

A similar procedure may be used to compute the multiplicity of a point p €

C1\ (L U Cs), where, in homogeneous coordinates, we may write
p=1(0,0,1,0,9% 1),
for some «y € k*. In this case, we may take the hyperplane V(f) to be given by
f = Msy — ¥ My + B1(Msg — yMus) + BoMiz + B3 Miz + BaMos,

for some f1,...,04 € k. Assuming that the values of fi,..., 5, are generic, the

ideal Jp is generated, in this case, by six polynomials in two variables, where the
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quotient ring is isomorphic to k[y, 2](,, .y modulo the ideal generated by

Y,z

3

2 2 3
Yy, Yz Yz, 2

2 2 2
, a1yt +ooyz, syt +ayz”,

where aq,...,ay are scalars that depend on v, A, 81,..., 4. Hence, the quotient
ring has dimension at most four. A computation using SINGULAR, [8], verified
the dimension to be four, and so did a computation with the Affine package in
Maxima, [17]. In fact, the latter revealed that the only denominators used in the
application of Bergman’s Diamond Lemma were nonzero scalar multiples of powers
of v and of 2y + 81, and thus are nonzero for a generic hyperplane V(f). It follows
that the multiplicity of any point of C; that lies on only C; is four.

An analogous argument for the curve Cy entails using a point of the form

p:(la 7> #(1+4(>‘72)7378’76)7 7%7

(1 =40 = 87°), gs(1 - 47" —8Y9)),

where v € k*, and a hyperplane V(f), with

f=vMy— Mg+ Y BN,

1<i<4
where
Ny = Mg + 27 Mag,
Ny = 873 Moy + (1 — 4My* — 8+°) Mo,
N3 = 4y M3y + (1 — 49> — 8+°%) Mo,
Ny = Mg — yMzq + (A — 1)y* Mag,
and (1,...,04 € k. In this case, by inverting M;js, one may reduce the number

of variables to two by using the polynomials in (3.1). Intersecting with V(f) and
taking 4 # 0, one may solve for the image of M3, leaving only one variable,
namely, the image of Ms3. In this manner, one obtains an ideal in a ring isomorphic
to k[y](142y) that is generated by a polynomial of the form (1 + 2vyy)g, where
9 € k[y](142+y)- In this setting, p corresponds to the solution of 14-2yy = 0. If the
values of (1, ..., (s are generic, then g|, # 0 and deg(g) = 7. It follows that the
multiplicity of L at p is one, and that a generic hyperplane intersects Cy at eight
points (counted with multiplicity), so deg(Csy) = 8.

It is straightforward to see that L N Cy = LN V(M14Ma4). In order to consider
where Cy meets L or C7, we first compute, using degree reverse lexicographical

ordering (with the aid of algebra software, such as Mathematica, [16]), a Grobner
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basis for the image of Jp from inverting M5, after which we homogenize the ele-
ments of the Grobner basis. The ideal generated by these homogenized elements
and the element M, is generated by M243, Mfg + M233, Mgﬁp 2Mi4 Moy — M§4 and
a dozen other polynomials that vanish on the closed points in the zero locus of the

given four polynomials. The last assertion in the statement now follows. O

We observe that computing the degree of Lp from the multiplicities and degrees
of the components of £p confirms a total degree of 4 + 2(4) 4+ 8 = 20, as expected
from [7, Proposition 3.2].

Remark 3.6. In light of Theorem 3.5, it is clear how Corollary 1.5 embeds the
point scheme V(z3) UV (2122 — 22) of B’ into the line scheme of B. The line V(x3)
in P? corresponds to the line L in Theorem 3.5, and the conic V(z179 — 23) in P?
corresponds to the conic C; in Theorem 3.5. Also, the plane that houses the point
scheme of B’ can be identified with the plane V(Mia, M3, Mag) C P°.

Corollary 3.7.

(a) The lines in P3 that are parametrized by L are the lines that lie on the
plane V(x3) C P? and pass through the point e, = V(x1, x2, 3) € P3.

(b) The lines in P that are parametrized by Cy are those that lie on the singular
quadric V(x1z2 — 23) C P? and pass through the singular point, ey, of the
quadric.

(¢) For every A € k*, the lines in P3 that are parametrized by Cy\ (L U C})
are all the lines

V(zs — agxy — ﬁx% Xy — a1 — byxa)
where a3 € k™, a4 = ag(ﬁ —aj + %) and by = i(ag - é + % —1).
Proof. For (c), the defining polynomials of Cy imply that a line parametrized
by Co\ (L U C}) may be depicted using a rank-2 2 x 4 matrix

1 0 as a4

0 1 b3 b4

b

where the entries are scalars that satisfy the equations

b4 = %(a§—2b§+()\—2)b3), 0 = 2&3()3—1,
ay = —%(2a§—/\a3—b§), 0 = a3b4—a4b3—a§+b§+%.

However, the last equation follows from the previous three equations, and substitu-

tion of by = i into a4 and by leads to the result for (c). The proof of (a) and (b)

is similar and is omitted. O
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Since the point schemes of A and B are finite, it is difficult to see if the point
scheme in each case is informing us of anything useful about elements in each
algebra. It is therefore reasonable to investigate whether or not the line scheme
might be informing us of such data.

In particular, regarding the algebra A, the line L; is contained in the plane
V(Mia, Mis, Mas), for all i < 3, and every component of £, is contained in the
hypersurface V(Mj2). Within the algebra A, the elements 2% and 23 are central
elements, so possibly the line scheme is noting this behavior. Moreover, the im-
ages of dr; — bxe and of (dxy — bxs)xrs are normal elements in the factor algebra
A/{(z%, z3), and the images of % and of z1x5 are normal elements in the factor al-
gebra A/(z?, x3, (dw1 —bxs)xs). Turning to the algebra B, both the line L and the
conic C; are contained in the plane V(Mja, Mi3, Ma3), and, in B, the elements %
and 73 are central elements. Although some of this geometric behavior is a con-
sequence of Theorem 1.4 and of A (respectively, B) being an Ore extension of A’
(respectively, of B’), this relationship between the line scheme and elements in A
and B is reminiscent of observations noted in [5,24] regarding certain quadratic
quantum P3s that are regular graded skew Clifford algebras ([4]), and perhaps sug-
gests, more generally, that the line scheme might encode algebraic properties of

certain elements in a quadratic quantum P3.
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