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Abstract. The classification of quantum P2s was completed by M. Artin et

al. decades ago, but the classification of quadratic algebras that are viewed as

quantum P3s is still an open problem. Based on work of M. Van den Bergh,

it is believed that a “generic” quadratic quantum P3 should have a finite

point scheme and a one-dimensional line scheme. Two families of quadratic

quantum P3s with these geometric properties are presented herein, where each

family member has a line scheme that is either a union of lines or is a union of

a line, a conic and a curve. Moreover, we prove that, under certain conditions,

if A is a quadratic quantum P3 that contains a subalgebra B that is a qua-

dratic quantum P2, then the point scheme of B embeds in the line scheme of A.
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Introduction

An AS-regular algebra of global dimension n+ 1 is viewed by many researchers

as being a noncommutative (or quantized) analogue of the polynomial ring on

n + 1 variables. For this reason, such an algebra is often called a quantum Pn
.

Although the classification of quantum P2s was completed many years ago (cf.

[1,2,3,20,21,22]), the classification of quantum P3s remains an open problem. Given

the large role played by the geometric techniques developed by M. Artin, J. Tate and

M. Van den Bergh in their seminal papers [2,3] in the classification of quantum P2s,
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it is reasonable to expect that similar geometric techniques will play an analogous

role in the classification of quantum P3s. Hence, identification of any geometric

properties satisfied by quantum P3s, or by “generic” quadratic quantum P3s, is

desirable.

Based on unpublished notes of M. Van den Bergh, and as explained in [25,

Section 1D], a “generic” quadratic quantum P3 has a one-dimensional line scheme,

and has defining relations whose zero locus consists of twenty points (counted with

multiplicity). In particular, such an algebra has at most twenty nonisomorphic

point modules. Additionally, in [7], it is proved that if the line scheme of a quadratic

quantum P3 has dimension one, then, when viewed as a subscheme of P5 via the

Plücker embedding, the line scheme has degree twenty. This raises the question

(posed by S. P. Smith to the authors) of whether or not there could exist a quadratic

quantum P3 that has a finite point scheme while simultaneously having a line scheme

consisting of a union of lines.

Addressing Smith’s question is one of our main objectives in this article, and

we answer the question in the affirmative, in Section 3, while computing, in Theo-

rems 3.1 and 3.5, the line scheme of algebras that belong to two families of quadratic

algebras whose members are candidates for being “generic” quadratic quantum P3s.

Indeed, via the Plücker embedding, we exhibit the line scheme of the algebras as

a subscheme of P5, showing that, for the algebras in one family, the line scheme

is the union of ℓ lines, where ℓ ∈ {3, 4}, and that, for the algebras in the other

family, the line scheme is the union of a line, a conic and a curve. In so doing, we

accomplish one of our other main objectives which is to add to the few examples in

the literature (cf. [5,6,9,19,24]) of quadratic algebras that are candidates for being

“generic” quadratic quantum P3s.

Moreover, the algebras in the two families we study are Ore extensions of cer-

tain quadratic quantum P2s, and we noticed that the point scheme of the quadratic

quantum P2 in each case is embedded in the line scheme of the quadratic quan-

tum P3. This observation led to Theorem 1.4 proving that this behavior is not a

coincidence.

The paper is outlined as follows. Section 1 lays out some notation to be used

throughout the article, and presents the two families of algebras to be studied

herein. The algebras first appeared in [23], so some results from [23] are reviewed

in Section 1. In the second half of the section, we prove Theorem 1.4, showing

that, under certain conditions, if a quadratic quantum P3 contains a quadratic
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quantum P2 as a subalgebra, then the point scheme of the quadratic quantum P2

embeds in the line scheme of the quadratic quantum P3.

In Section 2, we compute the point scheme, in Proposition 2.1, of the algebras

presented in Section 1, and, in Section 3, we compute their line schemes in The-

orems 3.1 and 3.5. We describe which lines in P3 are parametrized by the line

schemes in Corollaries 3.3 and 3.7.

This article is based on the Ph.D. dissertations, [13,15], of the first and third

authors and on Chapter 3 of the Ph.D. dissertation, [14], of the second author.

Hence, some details have been omitted that can be found in [13,14,15].

1. Two families of quadratic quantum P3s

In this section, we introduce some notation to be used throughout the article,

and present two families of quadratic AS-regular algebras that are candidates for

being generic quadratic quantum P3s. In Section 1.2, in Theorem 1.4, we prove

that, under certain conditions, if b is a quadratic quantum P2 that is a subalgebra

of an algebra, a, that is a quadratic quantum P3, then the point scheme of b embeds

in the line scheme of a.

Throughout the article, k denotes a field. After this section, we will impose the

additional assumptions that k be algebraically closed and satisfy char(k) = 0. The

dual of any finite-dimensional k-vector space W will be denoted by W*. For any

nonzero ring R, we write R× to denote the subset of all units in R, whereas for

i ∈ Z and any Z-graded k-algebra R, we write Ri for the span of the homogeneous

degree-i elements in R. The scheme-theoretic zero locus in Pn
of homogeneous

polynomials f1, . . . , fr will be denoted by V(f1, . . . , fr).

1.1. Two families of algebras. In this subsection, we present the two families

of AS-regular algebras of global dimension four that were introduced in [23]. In

particular, let A denote the k-algebra on four generators, x1, x2, x3, x4, subject to

the defining relations

x2x1 = −x1x2, x4x1 = −x1x4 + x2
2 + bx2

3,

x3x1 = x1x3, x4x2 = −x2x4 + x2
1 + dx2

3,

x3x2 = x2x3, x4x3 = x3x4 + x1x2,

(1.1)

where b ∈ k× or d ∈ k×. In fact, A is a member of the 4-parameter family of algebras

given in [23, Proposition 2.1], and we have taken two of the parameters (a and c) in

that family to be zero (and retained the name of the other two parameters for any
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readers who wish to compare A with the algebras in [23, Proposition 2.1]). By [23,

Proposition 2.1], A is a noetherian, AS-regular domain of global dimension four, is

an infinite module over its center, has a finite point scheme consisting of at most five

closed points, and has a line scheme of dimension one. Moreover, in the proof of [23,

Proposition 2.1], it was established that A is an Ore extension, A′[x4 ; σ, δ], of the

subalgebra A′ that is generated by x1, x2, x3, where σ ∈ Aut(A′). In particular,

A is a free A′-module, so it follows that the defining relations of A′ are given by the

three relations in (1.1) that do not use x4, and so A′ is a quadratic quantum P2,

with point scheme given by the “triangle” V(x1x2x3) ⊂ P2.

For the second family, letB denote the k-algebra on four generators, x1, x2, x3, x4,

subject to the defining relations

x2x1 = −x1x2 + 2x2
3, x4x1 = −x1x4 + x2

2 + λx1x3,

x3x1 = x1x3, x4x2 = −x2x4 + x2
1 + (λ− 2)x2x3,

x3x2 = x2x3, x4x3 = x3x4 + x1x2 − x2
3,

(1.2)

where λ ∈ k. Analogous to the situation for A, the algebra B is a member of the

5-parameter family of algebras given in [23, Proposition 2.2], and we have taken

four of the parameters to be zero. By [23, Proposition 2.2], B is a noetherian,

AS-regular domain of global dimension four, is an infinite module over its cen-

ter, has a finite point scheme consisting of exactly seven closed points, and has a

line scheme of dimension one. Moreover, as mentioned in [23], B is an Ore ex-

tension, B′[x4 ; σ, δ], of the subalgebra B′ that is generated by x1, x2, x3, where

σ ∈ Aut(B′). In particular, B is a free B′-module, so it follows that the defining

relations of B′ are given by the three relations in (1.2) that do not use x4, and so

B′ is a quadratic quantum P2, with point scheme given by the union of a line and

a conic, namely V(x3) ∪ V(x1x2 − x2
3) ⊂ P2.

Before proceeding, we make the observation in our next result that each of the

algebras A and B encode some symmetry.

Lemma 1.1. Writing A as A(b, d) and B as B(λ), we have that A(b, d) ∼= A(d, b)

for all b, d ∈ k, and B(λ) ∼= B(2− λ) for all λ ∈ k.

Proof. Let V =
∑

1≤i≤4 kxi, so A1 = V = B1. The linear map ϕ : V → V given

by

x1 7→ x2, x2 7→ x1, x3 7→ −x3, x4 7→ x4,

induces an isomorphism from A(b, d) to A(d, b), for all b, d ∈ k, and, similarly,

induces an isomorphism from B(λ) to B(2− λ), for all λ ∈ k. □
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Owing to Lemma 1.1, we henceforth take d ̸= 0 in all discussions regarding the

algebra A, and λ ̸= 0 in all discussions regarding B.

The algebras A and B were presented in [23] since each algebra is an example

of a quadratic AS-regular algebra of global dimension four that is not a finite

module over its center, yet the algebra has a finite point scheme with a finite-order

automorphism acting on the point scheme. This was discussed in detail in [10], in

which the fat-point modules over A and B were computed and found to exhibit an

automorphism of infinite order.

1.2. Point schemes embedded in line schemes. Before concluding this sec-

tion, we prove in Corollary 1.5 that the point scheme of A′ (respectively, B′) is

contained in the line scheme of A (respectively, B), and that this containment is a

special case of a more general result, namely Theorem 1.4. Our results on this issue

build on results in [13, Section 4.4]. We remind the reader that the point scheme (re-

spectively, line scheme) is the scheme that represents the functor of point modules

(respectively, line modules); cf. [2,18]. We refer to the reduced variety of the point

scheme (respectively, line scheme) as the point variety (respectively, line variety).

Lemma 1.2. Suppose that a is a Z-graded k-algebra that contains a Z-graded sub-

algebra b such that b1 ⊂ a1, where dim(b1) = 3 and dim(a1) = 4. If u, v ∈ b1

satisfy dim(ub1 + vb1) ≤ 5, then dim(ua1 + va1) ≤ 7.

Proof. With the given hypotheses, we may write a1 = b1 ⊕ kw for some w ∈
a1 ⧹ b1. It follows that ua1 + va1 = ub1 + vb1 + kuw + kvw. Thus,

dim(ua1 + va1) ≤ dim(ub1 + vb1) + dim(kuw + kvw) ≤ 5 + 2,

which yields the result. □

Proposition 1.3. Suppose a is a quadratic Auslander-regular algebra of global di-

mension four that satisfies the Cohen-Macaulay property with Hilbert series Ha(t) =

1/(1 − t)4. If a contains a quadratic AS-regular subalgebra b of global dimension

three, where b1 ⊂ a1, then the point variety of b embeds in the line variety of a.

Proof. Let M denote a right point module over b. Since b is a quadratic AS-

regular algebra of global dimension three, we have M ∼= b
ub+vb , where u, v ∈ b1 are

linearly independent and dim(ub1 + vb1) = 5. The Hilbert series of a implies that

dim(a1) = 4, so Lemma 1.2 implies that dim(ua1 + va1) ≤ 7. Since a is connected

and Auslander regular, it follows from [11, Theorem 4.8] that a is a domain. Thus,

ua1 ∩ va1 ̸= {0}, so [12, Proposition 2.8] implies that a
ua+va is a line module over a.
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In other words, the point V(u, v) ⊂ P2 corresponds to a point module over b, while

the line V(u, v) ⊂ P3 corresponds to a line module over a, which completes the

proof. □

In Proposition 1.3, if p belongs to the point scheme of b, then the image of p in

the line scheme of a could conceivably have multiplicity lower than that of p. The

following result shows that this situation cannot arise.

Theorem 1.4. Under the hypotheses of Proposition 1.3, we have that the point

scheme of b embeds in the line scheme of a.

Proof. Our method of proof builds on the proof of Proposition 1.3 by using the

notion of a family of point (respectively, line) modules, M = ⊕i≥0Mi, parametrized

by S = Spec(R), where R is a commutative k-algebra, as discussed in [2, Section 3].

In other words, in our setting, M is a graded module over the algebra R ⊗k b

(respectively, R ⊗k a). In fact, since M is either a family of point modules or

line modules, we have M0 = R, so M is compatible with descent, which implies

that we may assume that R is a commutative local k-algebra, and that Mi is a

free R-module of rank one (respectively, rank i + 1), for all i. Thus, we consider

the module M , from the proof of Proposition 1.3, as determining a point module

R⊗kb
u(R⊗kb)+v(R⊗kb)

over R⊗k b, and, using the proof of Proposition 1.3, we produce

a line module R⊗ka
u(R⊗ka)+v(R⊗ka)

over R ⊗k a, thereby showing that a family of

point modules over b is determining a family of line modules over a. The result

follows. □

Corollary 1.5. With A, A′, B, B′ as defined in Section 1.1, the point scheme of A′

(respectively, B′) embeds in the line scheme of A (respectively, B).

Proof. Since A is an Ore extension of A′, A′ is a subalgebra of A, and similarly

for B and B′. The result follows by applying Theorem 1.4. □

The embedding maps that are intrinsic to Corollary 1.5 are described in greater

detail in Remarks 3.4 and 3.6.

2. The point schemes of A and B

Henceforth, we impose the additional assumption that k be algebraically closed

and satisfy char(k) = 0. Although a count was provided in [23] for the total number

of distinct points in the point scheme of A, and in the point scheme of B, the actual
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point schemes were not computed in [23]. Thus, in this section, we determine the

point scheme of the algebra A in Proposition 2.1 and the point scheme of the

algebra B in Proposition 2.2.

It will be convenient to write V = A1 (respectively, V = B1) and identify P3

with P(V *).

Proposition 2.1. Suppose d ̸= 0, and let δij denote the Kronecker-delta symbol,

where i, j ∈ k. The point scheme, PA ⊂ P3, of A consists of

(a) e4 = (0, 0, 0, 1) = V(x1, x2, x3) with multiplicity 16 + 2δ0b, and

(b) two distinct points of the form (2d, 0, α1, −b), where α2
1 = −4d and each

point has multiplicity one, and

(c) 2(1− δ0b) distinct points of the form (0, 2b, α2, −d), where α2
2 = −4b and

each point has multiplicity one.

In particular, all the points lie on the union V(x1x2x3) ⊂ P3 of the first three

coordinate planes.

Proof. Following the method in [2], we write the defining relations (1.1) of A

as Mx, where M is the 6× 4 matrix

x2 x1 0 0

x3 0 −x1 0

0 x3 −x2 0

x4 −x2 −bx3 x1

−x1 x4 −dx3 x2

0 −x1 x4 −x3


,

and x is the column vector given by the transpose of [x1, . . . , x4]. As explained

in [2], the point scheme of A can be computed as a subscheme of P3 by finding the

zero locus of the 4× 4 minors of M . Three of the 4× 4 minors are:

bx2x
3
3+x2

1x
2
2+x3

2x3, −dx1x
3
3+x2

1x
2
2−x3

1x3, −bx2x
3
3+dx1x

3
3+x3

1x3−x3
2x3,

which sum to 4x2
1x

2
2. We first address finding the closed points of the point scheme,

after which we compute the multiplicity of the points.

Considering where x1 = 0 = x2, we find that, since d ̸= 0, there is only one

solution, namely the point e4 = V(x1, x2, x3). On the other hand, considering

where x1 = 0 ̸= x2, we find that if b = 0, then there is no solution, whereas if

b ̸= 0, then we have x2
2 + bx2

3 = 0 = dx2 + 2bx4. This latter case, where b ̸= 0,

yields two distinct solutions, namely (0, 2b, ±2
√
−b, −d). Turning to the case
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where x1 ̸= 0 = x2, we find that, since d ̸= 0, we may use the isomorphism from

Lemma 1.1 to reveal exactly two distinct points, namely (2d, 0, ±2
√
−d, −b).

In order to find the multiplicity of any point in PA, we need to consider the

coordinate ring R = k[x1, . . . , x4]/J of PA, where J is the ideal generated by the

4 × 4 minors of the matrix M . In particular, when computing the multiplicity at

p ∈ PA, we consider the localization Rp of R at p.

If b ̸= 0, then x2 and x3 are both nonzero at the point p = (0, 2b, α2, −d),

where α2
2 = −4b. Moreover, x1x2x

2
3 ∈ J , so the image of x1 in Rp is zero. By

inverting x2, the remaining elements of J imply that 2X4 − dX2
3 and bX2

3 + 1 are

zero in Rp, where Xi denotes the image of xi in Rp, for i ∈ {3, 4}. It follows that

dim(Rp) ≤ 2. However, since bX2
3 + 1 vanishes at two distinct points in PA, we

have that dim(Rp) = 1, so p has multiplicity one. By using Lemma 1.1, we deduce

that the multiplicity of (2d, 0, α1, −b), where α2
1 = −4d, is also one.

Since PA is finite, an unpublished result of M. Van den Bergh (cf. [25, Sec-

tion 1D]) implies that the sum of the multiplicities of all the points in PA is twenty,

and hence the multiplicity of e4 is as claimed in the statement, which concludes the

proof. (Alternatively, the reader is referred to [13, Pages 20-21] and [14, Page 28] for

details concerning explicit computation of the multiplicity of e4. However, in [13],

the last exponent in the first polynomial on the last line of Page 20 should be 3,

not 2.) □

Proposition 2.2. The point scheme, PB ⊂ P3, of B consists of

(a) e4 = (0, 0, 0, 1) = V(x1, x2, x3) with multiplicity 14, and

(b) six distinct points of the form (2α2(α3 + 2), 2α, 2, α3 + λ), where

α6 + 2α3 − 1 = 0 and each point has multiplicity one.

In particular, all seven points lie on the singular quadric V(x1x2 − x2
3) ⊂ P3.

Proof. Following the proof of Proposition 2.1, the defining relations (1.1) of B

may be written as Mx, where M is the 6× 4 matrix

x2 x1 −2x3 0

x3 0 −x1 0

0 x3 −x2 0

x4 −x2 −λx1 x1

−x1 x4 (2− λ)x2 x2

0 −x1 x3 + x4 −x3


,
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and x is the column vector given by the transpose of [x1, . . . , x4]. One of the 4×4 mi-

nors of M is (x1x2−x2
3)x

2
3, while another three 4×4 minors of M belong to x3

1x2+

x3k[x1, . . . , x4], −x4
1+(kx2+kx3)k[x1, . . . , x4] and −x4

2+(kx1+kx3)k[x1, . . . , x4].

It follows that if x3 = 0, then x1 = 0 = x2, yielding the point e4 = V(x1, x2, x3)

as a solution. On the other hand, inverting x3, the ideal generated by the images

of the 4× 4 minors of M is generated by

X1 −X5
2 − 2X2

2 , 2X4 −X3
2 − λ and X6

2 + 2X3
2 − 1,

where Xi is the image of xi, for all i ̸= 3, in the ring obtained by inverting x3.

Comparing the latter polynomial with its derivative (given that char(k) = 0), we

find that there are six distinct solutions for X2. Thus, if x3 ̸= 0, then there are six

distinct points of the form

(2α2(α3 + 2), 2α, 2, α3 + λ),

where α6 + 2α3 − 1 = 0. Moreover, our discussion implies that the coordinate ring

of PB ⧹ {e4} is isomorphic to

k[X]

⟨X6 + 2X3 − 1⟩
,

which has dimension six, so each of the six distinct points has multiplicity one.

Appealing to the unpublished result of M. Van den Bergh that was mentioned in

the proof of Proposition 2.1 completes the proof. □

3. The line schemes of A and B

A method for computing the line scheme of a quadratic AS-regular algebra of

global dimension four on four generators with six relations is given in [19]. For the

algebra A, the method is described in [13] and, for the algebra B, the method is

described in [15]. In this section, Theorems 3.1 and 3.5 identify the line schemes

of A and B when viewed via the Plücker embedding. In particular, the line scheme

of A is the union of ℓ lines, where ℓ ∈ {3, 4}, and the line scheme of B is the union

of a line, a conic and a degree-8 curve. Corollaries 3.3 and 3.7 describe the lines

in P3 that are parametrized by the line schemes of A and B.

We continue to assume that k is algebraically closed and satisfies char(k) = 0.

The method in [19] for computing the line scheme of a quadratic AS-regular

algebra of global dimension four on four generators with six relations entails the

following. One finds the Koszul dual, D, of the quadratic algebra, and writes the

defining relations of D using a 10 × 4 matrix M, and then forms a 10 × 8 matrix

by juxtaposing M evaluated at an arbitrary element of V with M evaluated at
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a potentially different arbitrary element of V . The method then requires one to

compute the 45 8 × 8 minors of the 10 × 8 matrix. After substituting Plücker

coordinates M12, M13, M14, M23, M24, M34 into the 45 minors, one seeks the zero

locus of the ideal generated by the 45 polynomials so obtained together with the

quadratic Plücker polynomial,

p = M12M34 −M13M24 +M14M23.

For the algebra A (respectively, B), we denote the ideal generated by these 46 poly-

nomials as JA (respectively, JB).

Using the above Plücker coordinates, in accordance with the recipe in [19],

has the advantage of allowing us to carry information from the line scheme back

to P(V *). In particular, if p = (p1, . . . , p4) and q = (q1, . . . , q4) are distinct points

in P(V *), then Mij (where 1 ≤ i < j ≤ 4) can be taken to be the 2× 2 minor using

columns i and j from the 2× 4 rank-2 matrixp1 p2 p3 p4

q1 q2 q3 q4

 .

We view this 2 × 4 rank-2 matrix as representing the line in P(V *) that passes

through p and q, and it corresponds to a point on the Grassmannian, V(p), of all
lines in P3. This description of lines in P3 via Plücker coordinates and the 2 × 4

matrices is called the Plücker embedding. For example, viewing the line scheme of

the polynomial ring, k[x1, . . . , x4], in P5 via the Plücker embedding yields its line

scheme to be V(p).
It was proved, in [7], that if the line scheme of a quadratic quantum P3 has

dimension one, then, when viewed as a subscheme of P5 via the Plücker embedding,

the line scheme has degree twenty. As mentioned in the Introduction, this raises the

question (posed by S. P. Smith to the authors) of whether or not there could exist

a quadratic quantum P3 that has a finite point scheme while simultaneously having

a line scheme consisting of a union of lines, when viewed via the Plücker embedding

in P5. The next result addresses this question in the affirmative by showing that

the algebra A, with the restrictions imposed on the parameters in Section 1.1, has

a line scheme that is a union of lines. It is still an open question whether or not

a quadratic quantum P3 could have a line scheme that is a union of 20 distinct

lines. It is also an open question as to what the line scheme of a generic quadratic

quantum P3, or of classes of generic quantum P3, is likely to be, although a few

examples are provided in [5,6,9,19,24].
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Theorem 3.1. If d ̸= 0, then the line scheme, LA, of A has dimension one. In

this case, viewing LA as a subscheme of P5 via the Plücker embedding, the reduced

variety of LA is a union of lines. More precisely, writing

L1 = V(M12, M13, M23, M14) ⊂ P5,

L2 = V(M12, M13, M23, M24) ⊂ P5,

L3 = V(M12, M13, M23, M34) ⊂ P5,

L4 = V(M12, dM13 − bM23, dM14 − bM24, (b
3 + d3)M23 − 2bd2M34) ⊂ P5,

we have

(a) LA = L1 ∪ L2 ∪ L3, if b = 0, where L1, L2 and L3 have multiplicities 8, 6

and 6 respectively, and

(b) LA = L1 ∪L2 ∪L3 ∪L4, if b ̸= 0, where Li has multiplicity 6 for i ≤ 3 and

L4 has multiplicity 2.

Moreover, Li ∩ Lj is nonempty whenever i, j ≤ 3 or i, j ≥ 3, whereas, if b ̸= 0,

then Li ∩ L4 is empty for i ≤ 2.

Proof. By [7, Proposition 3.2], if dim(LA) = 1, then every irreducible component

of LA has dimension one; in particular, there are no embedded components. We

first compute the closed points of LA, after which we discuss the multiplicities of

the points. For any omitted details, the reader is referred to [13,14].

For arbitrary b and d, the 45 polynomials obtained from the 10 × 8 matrix

discussed above are provided in [13, Section 6.2.2] and, for b = 0, they are provided

in [14, Section 6.2]. In seeking the reduced variety of LA, we note that, since one

of the polynomials is M4
12, we may assume that M12 = 0. With the assumption

that d ̸= 0, a Gröbner basis computed with Wolfram’s Mathematica, [16], on the

generators of JA + ⟨M12⟩ yields that either dM13 = bM23 or that M13 = 0 = M23.

In the latter case, we find that M14M24M34 = 0, which proves that Li ⊂ LA for all

i ≤ 3, and no other solutions exist in this case. In the case where dM13 = bM23,

we may assume that M23 ̸= 0, so another Gröbner basis computation reveals that

dM14 = bM24 and (b3 + d3)M23 = 2bd2M34, which gives us precisely L4. It follows

that the first two assertions and part of the third assertion in the statement are

proved.

By Lemma 1.1, in order to compute the multiplicity of the points that lie on

only one component of LA, it suffices to consider such points on L2 and L3 only.
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Let p ∈ L2 ⧹Li for all i ̸= 2. In homogeneous coordinates, p may be written as

p = (0, 0, 1, 0, 0, γ),

for some γ ∈ k×. We wish to intersect L2 at p with a hyperplane V(f), where

f = M34 − γM14 + β1M12 + β2M13 + β3M23 + β4M24,

for some β1, . . . , β4 ∈ k. For this purpose, we first localize by inverting M14 and

substitute for M23 using the image of p in the localized ring. Our method at this

stage entailed using Mathematica to compute different Gröbner bases in order to

find a dozen or so elements in JA that are of the form gh, for some polynomials g

and h, where g|p ̸= 0. Each time, the factors given by h were appended to the

list of generators. Once this process stopped yielding such elements gh, we then

used the image of f in the localized ring in order to substitute for M34, while

removing our earlier substitution for M23 from the computation (but the image

of p in the localized ring is an element of the image of JA in the localized ring,

so that information is not lost). After computing another Gröbner basis, it was

found to have a zero locus that contained only p. The ideal, ĴA, generated by this

last Gröbner basis was generated by three polynomials in two variables, and the

quotient ring was isomorphic to k[y, z]⟨y, z⟩ modulo the ideal generated by

y5, 4γ2z2 − (d2γ4 + 1)y4,

2γ2y3 + (β4d+ 2β2γ + β4)y
4 − 4γ3yz,

so the quotient ring has dimension at most six. A computation using Singular, [8],

verified the dimension to be six, and so did a computation with the Affine package

in Maxima, [17]. In fact, the latter revealed that the only denominator used in the

application of Bergman’s Diamond Lemma was 4γ−2, which is nonzero. It follows

that the multiplicity of any point of L2 that lies on only L2 is six.

The procedure is very similar for the computation of the multiplicity of any point

of L3 that lies on only L3. In this case, we take the point

p = (0, 0, γ, 0, 1, 0),

for some γ ∈ k×. For the hyperplane V(f) this time, we use

f = M14 − γM24 + β1M12 + β2M13 + β3M23 + β4M34,

for some β1, . . . , β4 ∈ k. As in the case of L2, this time the ideal ĴA was again gen-

erated by three polynomials in two variables, and the quotient ring was isomorphic
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to k[y, z]⟨y, z⟩ modulo the ideal generated by

y5, 2z2 − (b2 − 2bdγ + d2γ2)y4,

4γyz + 2γ(b− dγ)y3 + d(2γβ3 + 2γ2β2 + γ3β4 + β4)y
4,

so again the quotient ring has dimension at most six. A computation using Singu-

lar, [8], verified the dimension to be six, and so did a computation with the Affine

package in Maxima, [17]. In fact, the latter revealed that the only denominator

used in the application of Bergman’s Diamond Lemma was 4γ, which is nonzero.

It follows that the multiplicity of any point of L3 that lies on only L3 is six.

If b ̸= 0, then Lemma 1.1 implies that the multiplicity of L1 is six, in which case

the multiplicity of L4 is 20 − 18 = 2, by [7, Proposition 3.2] (see Remark 3.2(b)).

On the other hand, if b = 0, then the multiplicity of L1 is 20− 12 = 8. (This latter

case highlights that, if b = 0, then L4 degenerates into L1 and adds its multiplicity

from the case where b ̸= 0 to the multiplicity of L1.)

The proof of the last assertion in the statement is left to the reader. □

Remark 3.2.

(a) If b = −d, then the defining polynomials of L4 are symmetric in b and d. If

b ̸= −d, then the last polynomial defining L4 can be replaced by

(b2 − bd+ d2)(M13 +M23)− 2bdM34

(since

(b3 + d3)M13 − 2b2dM34

belongs to the ideal that determines the line L4), which is again symmetric

in b and d.

(b) If one wishes to compute explicitly the multiplicity of L4 in Theorem 3.1(b),

one should likely change coordinates first as follows in order to help choose

the hyperplane V(f):

M12 7→ X1, M13 7→ (X2 + bX5)d
−1,

M23 7→ X5, M14 7→ (X3 + bX6)d
−1,

M24 7→ X6, M34 7→
(
(b3 + d3)X5 −X4

)
b−1d−2/2.

Consequently, one may choose f = X6 − sX5 −
∑

1≤i≤4 βiXi, where s, β1,

. . . , β4 ∈ k. In this case, one can reduce the number of variables to one,

say y, and compute the ideal ĴA (cf. the proof of Theorem 3.1 for notation)

to be ⟨y2⟩, so the quotient ring has dimension two, as expected.
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(c) As mentioned in Section 1.1, the algebras A belong to a 4-parameter family

of algebras introduced in [23, Proposition 2.1]. The line scheme of the larger

family is computed in [13, Theorem 3.3.1].

Corollary 3.3. Let L1, . . . , L4 be as in Theorem 3.1 concerning the line scheme

of A. For i ≤ 3, the lines in P3 that are parametrized by Li are those that lie on the

plane V(xi) and pass through the point V(x1, x2, x3) = e4. If b, d ∈ k×, then the

lines in P3 that are parametrized by L4 are those that lie on the plane V(dx1− bx2)

and pass through the point

V(x3, dx1 − bx2, b2x1 + d2x2 + 2bdx4).

Proof. The proof uses the description of the lines using Plücker coordinates and

the 2 × 4 matrices discussed at the start of this section. Details can be found in

[13, Section 4.2]. □

Remark 3.4. In view of our last result, we can see how Corollary 1.5 embeds the

point scheme V(x1x2x3) of A
′ into the line scheme of A. More precisely, for i ≤ 3,

the line V(xi) in P2 embeds in the line scheme of A as the line Li from Theorem 3.1.

Moreover, the plane that houses the point scheme of A′ can be identified with the

plane V(M12, M13, M23) ⊂ P5.

Theorem 3.5. The line scheme, LB, of B has dimension one. If λ ̸= 0, then,

viewing LB as a subscheme of P5 via the Plücker embedding, the reduced variety

of LB is the union of a line L, a conic C1 and a degree-8 curve C2, where

L = V(M12, M13, M23, M34) ⊂ P5,

C1 = V (M12, M13, M23, M14M24 −M2
34) ⊂ P5,

and the affine open subset of C2 where the first coordinate is nonzero is given by

V
(
M12 − 1, 2M13M23 + 1, M14 − 1

2 (M
2
23 − 2M4

13 + (λ− 2)M13),

M24 − 1
2 (2M

4
23 + λM23 −M2

13), M34 +M3
23 +M3

13 +
1
2

)
⊂ A5.

(3.1)

As subschemes of LB, L has multiplicity four, C1 has multiplicity four and C2 has

multiplicity one. Moreover, L ∩ C1 = L ∩ C2 = C1 ∩ C2 = L ∩ V(M14M24).

Proof. As in the proof of Theorem 3.1, if dim(LB) = 1, then there are no embedded

components. We first compute the closed points of LB , after which we discuss the

multiplicities of the points. For any omitted details, the reader is referred to [15],

where the case λ = 2 is discussed.
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In seeking the reduced variety of LB , we note that, for points where M12 is zero,

we also have

M13 = 0 = M23 and M34(M14M24 −M2
34) = 0,

which shows that L ∪ C1 ⊂ LB ∩ V(M12). Moreover, there are no other solutions

in this case. On the other hand, if M12 ̸= 0, then inverting M12 and computing a

Gröbner basis (with standard lexicographical ordering) shows that the remaining

points of LB yield C2. It follows that the first two assertions in the statement are

proved.

Let p ∈ L⧹ (C1 ∪ C2). In homogeneous coordinates, p may be written as

p = (0, 0, 1, 0, γ, 0),

for some γ ∈ k×. We wish to intersect L at p with a hyperplane V(f), where

f = M24 − γM14 + β1M12 + β2M13 + β3M23 + β4M34,

for some β1, . . . , β4 ∈ k. Using the same method as that employed in the proof of

Theorem 3.1, and after computing a Gröbner basis that has zero locus containing

only p, we find that the ideal, ĴB , generated by this last Gröbner basis is gener-

ated by three polynomials in two variables, and the quotient ring is isomorphic to

k[y, z]⟨y, z⟩ modulo the ideal generated by

y3, (γ3 + 1)y2 − 2γ2yz, 4γ4z2 − (γ6 + 4γ3 + 1)y2,

so the quotient ring has dimension at most four. A computation using Singular,

[8], verified the dimension to be four, and so did a computation with the Affine

package in Maxima, [17]. In fact, the latter revealed that the only denominators

used in the application of Bergman’s Diamond Lemma were elements of k×γ4,

which are nonzero. It follows that the multiplicity of any point of L that lies on

only L is four.

A similar procedure may be used to compute the multiplicity of a point p ∈
C1 ⧹ (L ∪ C2), where, in homogeneous coordinates, we may write

p = (0, 0, 1, 0, γ2, γ),

for some γ ∈ k×. In this case, we may take the hyperplane V(f) to be given by

f = M24 − γ2M14 + β1(M34 − γM14) + β2M12 + β3M13 + β4M23,

for some β1, . . . , β4 ∈ k. Assuming that the values of β1, . . . , β4 are generic, the

ideal ĴB is generated, in this case, by six polynomials in two variables, where the
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quotient ring is isomorphic to k[y, z]⟨y, z⟩ modulo the ideal generated by

y3, y2z, yz2, z3, α1y
2 + α2yz, α3y

2 + α4z
2,

where α1, . . . , α4 are scalars that depend on γ, λ, β1, . . . , β4. Hence, the quotient

ring has dimension at most four. A computation using Singular, [8], verified

the dimension to be four, and so did a computation with the Affine package in

Maxima, [17]. In fact, the latter revealed that the only denominators used in the

application of Bergman’s Diamond Lemma were nonzero scalar multiples of powers

of γ and of 2γ + β1, and thus are nonzero for a generic hyperplane V(f). It follows
that the multiplicity of any point of C1 that lies on only C1 is four.

An analogous argument for the curve C2 entails using a point of the form

p =
(
1, γ, 1

8γ2 (1 + 4(λ− 2)γ3 − 8γ6), − 1
2γ ,

1
16γ4 (1− 4λγ3 − 8γ6), 1

8γ3 (1− 4γ3 − 8γ6)
)
,

where γ ∈ k×, and a hyperplane V(f), with

f = γM12 −M13 +
∑

1≤i≤4

βiNi,

where
N1 = M12 + 2γM23,

N2 = 8γ3M24 + (1− 4λγ3 − 8γ6)M23,

N3 = 4γ2M34 + (1− 4γ3 − 8γ6)M23,

N4 = M14 − γM34 + (λ− 1)γ2M23,

and β1, . . . , β4 ∈ k. In this case, by inverting M12, one may reduce the number

of variables to two by using the polynomials in (3.1). Intersecting with V(f) and

taking β4 ̸= 0, one may solve for the image of M13, leaving only one variable,

namely, the image of M23. In this manner, one obtains an ideal in a ring isomorphic

to k[y]⟨1+2γy⟩ that is generated by a polynomial of the form (1 + 2γy)g, where

g ∈ k[y]⟨1+2γy⟩. In this setting, p corresponds to the solution of 1+ 2γy = 0. If the

values of β1, . . . , β4 are generic, then g|p ̸= 0 and deg(g) = 7. It follows that the

multiplicity of LB at p is one, and that a generic hyperplane intersects C2 at eight

points (counted with multiplicity), so deg(C2) = 8.

It is straightforward to see that L ∩ C1 = L ∩ V(M14M24). In order to consider

where C2 meets L or C1, we first compute, using degree reverse lexicographical

ordering (with the aid of algebra software, such as Mathematica, [16]), a Gröbner
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basis for the image of JB from inverting M12, after which we homogenize the ele-

ments of the Gröbner basis. The ideal generated by these homogenized elements

and the element M12 is generated by M4
23, M

3
13 +M3

23, M
4
34, 2M14M24 −M2

34 and

a dozen other polynomials that vanish on the closed points in the zero locus of the

given four polynomials. The last assertion in the statement now follows. □

We observe that computing the degree of LB from the multiplicities and degrees

of the components of LB confirms a total degree of 4 + 2(4) + 8 = 20, as expected

from [7, Proposition 3.2].

Remark 3.6. In light of Theorem 3.5, it is clear how Corollary 1.5 embeds the

point scheme V(x3)∪V(x1x2 − x2
3) of B

′ into the line scheme of B. The line V(x3)

in P2 corresponds to the line L in Theorem 3.5, and the conic V(x1x2 − x2
3) in P2

corresponds to the conic C1 in Theorem 3.5. Also, the plane that houses the point

scheme of B′ can be identified with the plane V(M12, M13, M23) ⊂ P5.

Corollary 3.7.

(a) The lines in P3 that are parametrized by L are the lines that lie on the

plane V(x3) ⊂ P3 and pass through the point e4 = V(x1, x2, x3) ∈ P3.

(b) The lines in P3 that are parametrized by C1 are those that lie on the singular

quadric V(x1x2 − x2
3) ⊂ P3 and pass through the singular point, e4, of the

quadric.

(c) For every λ ∈ k×, the lines in P3 that are parametrized by C2 ⧹ (L ∪ C1)

are all the lines

V(x3 − a3x1 − 1
2a3

x2, x4 − a4x1 − b4x2)

where a3 ∈ k×, a4 = a3(
1

8a3
3
− a33 +

λ
2 ) and b4 = 1

2a3
(a33 − 1

8a3
3
+ λ

2 − 1).

Proof. For (c), the defining polynomials of C2 imply that a line parametrized

by C2 ⧹ (L ∪ C1) may be depicted using a rank-2 2× 4 matrix1 0 a3 a4

0 1 b3 b4

 ,

where the entries are scalars that satisfy the equations

b4 = 1
2 (a

2
3 − 2b43 + (λ− 2)b3), 0 = 2a3b3 − 1,

a4 = − 1
2 (2a

4
3 − λa3 − b23), 0 = a3b4 − a4b3 − a33 + b33 +

1
2 .

However, the last equation follows from the previous three equations, and substitu-

tion of b3 = 1
2a3

into a4 and b4 leads to the result for (c). The proof of (a) and (b)

is similar and is omitted. □
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Since the point schemes of A and B are finite, it is difficult to see if the point

scheme in each case is informing us of anything useful about elements in each

algebra. It is therefore reasonable to investigate whether or not the line scheme

might be informing us of such data.

In particular, regarding the algebra A, the line Li is contained in the plane

V(M12, M13, M23), for all i ≤ 3, and every component of LA is contained in the

hypersurface V(M12). Within the algebra A, the elements x2
1 and x2

2 are central

elements, so possibly the line scheme is noting this behavior. Moreover, the im-

ages of dx1 − bx2 and of (dx1 − bx2)x3 are normal elements in the factor algebra

A/⟨x2
1, x

2
2⟩, and the images of x2

3 and of x1x2 are normal elements in the factor al-

gebra A/⟨x2
1, x

2
2, (dx1−bx2)x3⟩. Turning to the algebra B, both the line L and the

conic C1 are contained in the plane V(M12, M13, M23), and, in B, the elements x2
1

and x2
2 are central elements. Although some of this geometric behavior is a con-

sequence of Theorem 1.4 and of A (respectively, B) being an Ore extension of A′

(respectively, of B′), this relationship between the line scheme and elements in A

and B is reminiscent of observations noted in [5,24] regarding certain quadratic

quantum P3s that are regular graded skew Clifford algebras ([4]), and perhaps sug-

gests, more generally, that the line scheme might encode algebraic properties of

certain elements in a quadratic quantum P3.
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