NP P RINGS, REDUCED RINGS AND SNF RINGS

Junchao Wei and Jianhua Chen

Received: 5 September 2007; Revised: 21 January 2008
Communicated by W. Keith Nicholson

Abstract. A ring R is called left NP P if for any nilpotent element a of R, $l(a) = Re, e^2 = e \in R$. A right R-module M is called $Nflat$ if for each $a \in N(R)$, the Z-module map $1_M \otimes i : M \otimes R a \rightarrow M \otimes R$ is monic, where $i : Ra \hookrightarrow R$ is the inclusion map. A ring R is called right SNF if every simple right R-module is $Nflat$. In this paper, we first show that a ring R is left NP P iff every sum of two injective submodules of a left R-module is nil--injective. And some properties of left NP P rings are given, for example, if R is left NP P, so is eRe for any $e^2 = e \in R$ satisfying $ReR = R$. Next, we study some properties of reduced rings. A ring R is reduced if and only if R is ZC and right SNF if and only if R is left and right NP P and R has no subrings which is isomorphic to the upper triangular matrix $UT_2(Z)$ or $UT(Z_p)^2$ for some prime p. Finally, we give some characterizations of n--regular rings, for example, a ring R is n--regular if and only if every right R--module is $Nflat$.

Mathematics Subject Classification (2000): 16E50, 16D30

Keywords: nil--injective modules, NP P rings, reduced rings, NC2 rings, n--regular rings, SNF rings, $Nflat$--modules.

1. Introduction

Throughout R denotes an associative ring with identity and all modules are unitary. For a subset X of R, the left (right) annihilator of X in R is denoted by $l(X)$ ($r(X)$). If $X = \{a\}$, we usually abbreviate it to $l(a)$ ($r(a)$). We write $J(R)$, $Z_l(R)(Z_r(R))$, $N(R)$, $Z(R)$ for the Jacobson radical, the left (right) singular ideal, the set of nilpotent elements, the set of central elements of R, respectively.

A left R--module M is called nil--injective [8] if every left R--homomorphism from a principal left ideal Ra with $a \in N(R)$ to M extends to one from $R\bar{R}$ to M. The ring R is called left nil--injective if $R\bar{R}$ is nil--injective. Note that left principally injective rings are nil--injective, but the converse is not true by [8, Example 2.2]. A ring R is called left NP P if for any $a \in N(R)$, $l(a) = Re, e^2 =
$e \in R$. Clearly, left pp ring (that is: for each $a \in R, l(a) = Re, e^2 = e \in R$) is left NPP, but the converse is not true by [8, Example 2.8]. A ring R is called left C_2 if Ra projective implies $Ra = Re, e^2 = e \in R$ for all $a \in N(R)$. Clearly, left C_2 ring [7] is left NC_2 and by [8, Corollary 2.7], left nil--injective ring is left NC_2. But the converse are all not true by [8, Example 2.21 and Example 2.5]. A ring R is called left NC_2 if Ra projective implies $Ra = Re, e^2 = e \in R$ for all $a \in N(R)$. Clearly, von Neumann regular rings are n--regular, but the converse is not true by [8, Remark 2.19]. A ring R is called n--regular if aRa for all $a \in N(R)$. Clearly, von Neumann regular rings are n--regular, but the converse is not true by [8, Example 2.8]. A ring R is called reduced if $N(R) = 0$, or equivalently, $a^2 = 0$ implies $a = 0$ in R for all $a \in R$. Clearly, a reduced ring is left nil--injective, left $NP P$ and left NC_2. In this paper, we first give some characterizations of left $NP P$ rings and study some properties of left $NP P$ rings. Next, we consider some conditions for a ring R being reduced. Finally, we introduce right $Nflat$ modules and right SNF rings, giving some characterizations of n--regular rings and reduced rings in terms of them.

2. Left $NP P$ rings

Theorem 2.1. The following conditions are equivalent for a ring R.

(1) R is left $NP P$.

(2) Every factor module of an injective left R--module is nil--injective.

(3) Every sum of two injective submodules of a left R--module is nil--injective.

(4) Every sum of two isomorphic injective submodules of a left R--module is nil--injective.

Proof. (3) \Rightarrow (4) and (2) \Rightarrow (1) are trivial. (1) \Rightarrow (2) follows from [8, Theorem 2.10(1)].

(2) \Rightarrow (3) Let N_1 and N_2 be two injective submodules of a left R--module M. Since $N_1 \oplus N_2$ is injective and there is an epimorphism $N_1 \oplus N_2 \twoheadrightarrow N_1 + N_2$, $N_1 + N_2$ is nil--injective.

(4) \Rightarrow (2) Let M be an injective left R--module and N a submodule. Let $U = M \oplus M, V = \{ (n, n) \mid n \in N \}, U/V, M_1 = \{ m, 0 \} \in U \mid m \in M \},$ and $M_2 = \{ (0, m) \in U \mid m \in M \}$. Then $U = M_1 + M_2$ and $M_i \cong M (i = 1, 2)$, so U is nil--injective by (4). Since M_1 is injective, M_1 is a summand of U and U/M_1 is isomorphic to a summand of U. Hence U/M_1 is nil--injective. Now there is a canonical isomorphism $M/N \cong U/M_1$, via $m + N \mapsto (0, m) + M_1$ and so M/N is nil--injective.

We denote by $M_n(R)$ the ring of n by n matrices over R. Since Morita equivalence preserves summands, epimorphisms, and monomorphisms, it must preserve projective modules. Hence we have the following theorem.
The following conditions are equivalent for a ring R.

(1) If $r \in N(R)$ and I be the principal left ideal of $M_2(R)$ generated by the diagonal matrix $\begin{pmatrix} r & 0 \\ 0 & 0 \end{pmatrix}$. Then I is a projective left $M_2(R)$-module. By [4, Theorem 3.2], there is a Morita equivalence between $M_2(R)$-modules and R-modules via $M \rightarrow eM$, where M is a left $M_2(R)$-module and $e = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$. Now $eI \cong Rr$ as R-modules, so Rr is a projective R-module. Hence R is left NPP.

(2) R is left NPP if for each $a \in N(R)$, Rr is flat. Clearly, left NPP ring is left NPF. We have the following theorem.

Theorem 2.3. The following conditions are equivalent for a ring R.

1. R is left NPP.
2. R is left NPF and for each $a \in N(R)$, $l(a)$ is finitely generated as a left R-module.
3. For each non-empty subset X of R, for each $a \in r(X) \cap N(R)$, there exists $a \in r(X)$ such that $a = ba$.

Proof. (1) \Rightarrow (2) is trivial.

(2) \Rightarrow (3) Let $\phi \neq X \subseteq R$ and $a \in r(X) \cap N(R)$. Then Ra is finitely presented flat left R-module by (2), so Ra is projective as left R-module. Hence $l(a) = Re$, $e_1 = e \in R$. Since $(1 - e)R = r(e) = r(Re) = r(l(a)) \subseteq rl(X) = r(X)$ and $a \in rl(a)$, $a = (1 - e)a$. Set $b = 1 - e \in r(X)$ Then $a = ba$.

(3) \Rightarrow (1) Let $a \in N(R)$. Then $a \in r(l(a)) \cap N(R)$, so $a = fa$ for some $f \in r(l(a))$ by (3). Since $1 - f \in l(a) \subseteq l(f)$, $f = f^2$ and $R(1 - f) \subseteq l(a)$. Now let $x \in l(a)$. Then $xf = 0$, so $x = x(1 - f) \in R(1 - f)$. Hence $l(a) = R(1 - f)$, which implies R is left NPP.

It is well known that for any left ideal K of a ring R, R/K is a flat left R-module if and only if for any $x \in K$, there exists $y \in K$ such that $x = xy$. Hence we have the following theorem.

Theorem 2.4. Let $e^2 = e \in R$ and $S = eRe$. Then

1. If R is NPF, so is S.
2. Let $ReR = R$ and $x \in N(S)$. If $l_R(x)$ is finite generated as a left R-module, so is $l_S(x)$ as a left S-module.
3. Let $ReR = R$. If R is left NPP, so is S.

Let \(\text{NP} P \in \mathbb{F} \) for all \(\mathbb{F} \). Hence there exists \(z \in l_R(x) \) such that \(y = yz \). Thus \(y = eye = yeze \). Since \(\text{NP} P \in \mathbb{F} \), \(\text{NP} \) and \(\text{NP} \) are left \(\mathbb{F} \)-module and so \(\mathbb{F} \) is left \(\text{NP} P \).

(2) Let \(l_R(x) = \sum_{i=1}^{n} Ra_i \) where \(a_i \in R \). Since \(R = ReR, 1 = \sum_{j=1}^{m} u_j e v_j \) where \(u_j, v_j \in R \). Let \(z \in l_S(x) \), then \(z \in l_R(x) \). Set \(z = \sum_{i=1}^{n} c_i a_i \). Then \(z = \sum c_i u_j e v_j a_i e \). So, clearly, as a left \(S \)-module, \(l_S(x) \) is generated by \(e v_j a_i e, i = 1, 2, \cdots, m; j = 1, 2, \cdots, n \).

(3) follows from (1), (2) and Theorem 2.3.

By definition, we have the following theorem.

Theorem 2.5. Let \(R = \prod_{i \in I} R_i \) be the direct product of rings \(\{ R_i | i \in I \} \). Then

(1) \(R \) is left \(\text{NP} P \) if and only if \(R_i \) is left \(\text{NP} P \) for all \(i \in I \).

(2) \(R \) is left \(NPP \) if and only if \(R_i \) is left \(NPP \) for all \(i \in I \).

Theorem 2.6. (1) Left \(\text{NP} P \) rings have no nonzero central nilpotent elements.

(2) Left \(NPP \) rings have no nonzero central nilpotent elements.

(3) If \(R \) is left \(\text{NP} P \), then \(Z(R) \) is reduced.

(4) If \(R \) is left \(NPP \), then \(Z(R) \) is reduced.

Proof. (1) Let \(R \) be left \(\text{NP} P \) and \(x \in Z(R) \) with \(x^n = 0 \) and \(x^{n-1} \neq 0 \). Since \(R/l(x) \cong Rx \) is flat and \(x^{n-1} l(x), x^{n-1} = x^{n-1} y \) for some \(y \in l(x) \). Since \(yx = 0 \) and \(x \in Z(R), xy = 0 \). Hence \(x^{n-1} = 0 \), which is a contradiction. So left \(\text{NP} P \) rings have no nonzero central nilpotent elements.

(2), (3) and (4) follow from (1).

[8, Theorem 2.9] shows that \(R \) is reduced if and only if \(R \) is abelian left \(NPP \), where a ring \(R \) is **abelian** if every idempotent of \(R \) is central. [8, Theorem 2.24] shows that \(R \) is \(n \)-regular if and only if \(R \) is left \(NPP \) left \(NC2 \). A ring \(R \) is called **NI** if \(N(R) \) forms an ideal of \(R \). A ring \(R \) is called **2-primal** if \(N(R) = P(R) \), where \(P(R) \) is the prime radical of \(R \). A ring \(R \) is called **ZC** if \(ab = 0 \) implies that \(ba = 0 \) for all \(a, b \in R \). Clearly, (1) \(ZC \) rings are abelian, **NI** and **2-primal**; (2) abelian rings are \(NC2 \); (3) \(2-primal \) rings are **NI**.

Theorem 2.7. The following conditions are equivalent for ring \(R \).

(1) \(R \) is reduced.

(2) \(R \) is \(n \)-regular and abelian.

(3) \(R \) is \(n \)-regular and \(N(R) \) forms a left ideal of \(R \).
(4) R is n–regular and $N(R)$ forms a right ideal of R.
(5) R is n–regular and NI.
(6) R is n–regular and 2–primal.
(7) R is left NPF and ZC.
(8) R is left nil–injective left nonsingular and NI.

Proof. (1) \iff (2) and (1) \Rightarrow (6) \Rightarrow (5) \Rightarrow (4) or (5) \Rightarrow (3) are trivial.

We will prove (3) \Rightarrow (4). The (4) \Rightarrow (1) is similar. Let $a \in R$ with $a^2 = 0$. Then $a = aba$ for some $b \in R$ because R is n–regular. Let $e = ba$. Then $e^2 = e$ and $a = ae$. Since $N(R)$ is a left ideal of R and $a \in N(R)$, $e = ba \in N(R)$. So $e = 0$ and then $a = ae = 0$. Hence R is reduced.

(1) \Rightarrow (7) follows from [8, Theorem 2.9] and Theorem 2.3.

(7) \Rightarrow (1) Let $x \in R$ with $x^2 = 0$. Then $R/\langle x \rangle$ is flat left R–module by (7). So $x = xy$ for some $y \in \langle x \rangle$ because $x \in \langle x \rangle$. Since R is ZC, $xy = 0$ because $yx = 0$. Thus $x = xy = 0$.

(1) \iff (8) follows from [8, Theorem 2.9].

Now we consider the $n \times n$ upper triangular matrix ring UTR_n over a ring R.

Theorem 2.8. Let R be a ring and $n \geq 2$. Then

(1) If UTR_n is left NPF, so is R.
(2) If UTR_n is left NPP, so is R.

Proof. (1) Let $a \in N(R)$. Then $A = \begin{pmatrix} a & 0 & 0 & \cdots & 0 \\ 0 & a & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & a \end{pmatrix} \in N(UTR_n)$.

Since UTR_n is left NPF, $UTR_n/\langle l \rangle_{UTR_n}(A)$ is flat left UTR_n–module. For any $b \in l_\langle a \rangle$, $B = \begin{pmatrix} b & 0 & 0 & \cdots & 0 \\ 0 & b & 0 & \cdots & 0 \\ 0 & 0 & b & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & b \end{pmatrix} \in l_{UTR_n}(A)$. So there exists $C = \begin{pmatrix} c_1 & c_{12} & c_{13} & \cdots & c_{1n} \\ 0 & c_2 & c_{23} & \cdots & c_{2n} \\ 0 & 0 & c_3 & \cdots & c_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & c_n \end{pmatrix} \in l_{UTR_n}(A)$ such that $B = BC$. Clearly, $c_1 \in l_\langle a \rangle$ and $b = bc_1$. This shows that R is left NPF.
Based on the above preceding result, we consider a kind of subring of $n \times n$ upper triangular matrix rings. For a ring R, we consider the ring

$$SUT R_n = \left\{ \begin{pmatrix} b & b_{12} & b_{13} & \cdots & b_{1n} \\ 0 & b & a_{23} & \cdots & b_{2n} \\ 0 & 0 & b & \cdots & b_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & b \end{pmatrix} | b, b_{ij} \in R \right\}. $$

Then by a similar proof proceeding of Theorem 2.8, we have the following:

Theorem 2.9. Let R be a ring and $n \geq 2$. Then

1. If $SUT R_n$ is left NP F, so is R.
2. If $SUT R_n$ is left NP P, so is R.

Let R be a ring and M a bimodule over R. The trivial extension of R and M is $R \ltimes M = \{(a, x) | a \in R, x \in M\}$ with addition defined componentwise and multiplication defined by $(a, x)(b, y) = (ab, ay + xb)$.

In fact, $R \ltimes M$ is isomorphic to the subring $\left\{ \begin{pmatrix} a & x \\ 0 & a \end{pmatrix} : a \in R, x \in M \right\}$ of the formal 2×2 matrix ring $\left(\begin{array}{cc} R & M \\ 0 & R \end{array} \right)$, and $R \ltimes R \cong R[x]/(x^2)$. If $\sigma : R \rightarrow R$ is a ring endomorphism, let $R[x; \sigma]$ denote the ring of skew polynomials over R; that is all formal polynomials in x with coefficients from R with multiplication defined by $xr = \sigma(r)x$. Note that if $R(\sigma)$ is the (R, R)–bimodule defined by $R \sigma = R R(\sigma)$ and $m \circ r = m \sigma(r)$, for all $m \in R(\sigma)$ and $r \in R$, then $R[x; \sigma]/(x^2) \cong R \ltimes R(\sigma)$. Similar to the proof proceeding of Theorem 2.8, we have the following theorem.

Theorem 2.10. (1) If one of the following rings is left NP F, so is R.

1. $R \ltimes M$. 2. $R \ltimes R$. 3. $R \ltimes R(\sigma)$. 4. $R[x]/(x^2)$.

(2) If one of the following rings is left NP P, so is R.

1. $R \ltimes M$. 2. $R \ltimes R$. 3. $R \ltimes R(\sigma)$. 4. $R[x]/(x^2)$.

It is well known that there exists a reduced ring R which is not left pp. We claim that neither UTR_2 nor $SUT R_2$ is left NPP. In fact, since R is not left pp, there exists $a \in R$ such that $l_R(a)$ is not a direct summand of $R R$. Then $A = \begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix} \in N(UTR_2)$. If UTR_2 is left NPP, then $l_{UTR_2}(A) = UTR_2 E$.

(2) It is similar to (1). \qed
where $E^2 = E = \begin{pmatrix} e_1 & x \\ 0 & e_2 \end{pmatrix} \in UTR_2$. By computing, we have $e_1^2 = e_1 \in R$ and $l_R(a) = Re_1$, which is a contradiction. Hence UTR_2 is not left NPP. Similarly, we can show that $SUTR_2$ is not left NPP. Hence there exists a left NPP ring R such that neither UTR_2 nor $SUTR_2$ is left NPP.

3. Reduced rings

In this section, we will prove that a NPP ring R is reduced if and only if R contains no subrings which are isomorphic to the matrix rings $UT\mathbb{Z}_2$ or $UT(\mathbb{Z}_p)_2$, where \mathbb{Z} denotes the integer ring and p is a prime number. For a ring R, let $E(R)$ denotes the set of all idempotents of R.

We begin with the following theorem.

Theorem 3.1. Let R be NPP. Then the following conditions are equivalent.

1. R is reduced.
2. $ef = fe$ for all $e, f \in E(R)$.
3. $E(R)$ is a subsemigroup of the semigroup (R, \cdot).
4. $ef = 0$ if and only if $fe = 0$ for all $e, f \in E(R)$.
5. $N(R) \cap Re = N(R) \cap eR$ for all $e \in E(R)$.
6. R is NI ring and $eN(R) = N(R)e$ for all $e \in E(R)$.

Proof. (1) \Rightarrow (2) \Rightarrow (3) and (1) \Rightarrow (6) \Rightarrow (5) are trivial.

(3) \Rightarrow (4) Let $e, f \in E(R)$ and $ef = 0$. By (3), $fe \in E(R)$. So $fe = fefe = f(ef)e = 0$.

(4) \Rightarrow (5) Let $x \in N(R) \cap Re$. Then $x(1-e) = 0$, so $1-e \in r(x) = (1-f)R$ for some $f^2 = f \in R$ because R is NPP and $x \in N(R)$. Hence $f(1-e) = 0$, by (4), $(1-e)f = 0$. Clearly, $1-e + (1-e)x \in E(R)$ and $f(1-e + (1-e)x) = 0$. By (4), $(1-e + (1-e)x)f = 0$. Thus $(1-e)xf = 0$. Since $r(x) = (1-f)R$, $(1-e)x(1-f) = 0$. So $(1-e)x = 0$. Hence $x = ex \in N(R) \cap eR$. This shows that $N(R) \cap Re \subseteq N(R) \cap eR$. Similarly, we can show $N(R) \cap eR \subseteq N(R) \cap Re$.

(5) \Rightarrow (1) Let $x \in R$ with $x^2 = 0$. Since R is NPP, $l(x) = Re, e^2 = e \in R$. So $x \in Re \cap N(R)$ and then $x \in eR$ by (5). Hence $x = ex$ and so $x = 0$ because $l(x) = Re$. Thus R is reduced. □

We first denote by $o(r)$ the additive order of $r \in R$, that is, the smallest positive integer n such that $nr = 0$. If r is of infinite order, then we simply write $o(r) = \infty$.

The following theorem is a generalization of [3, Lemma 3.1]. For convenience, we give its brief proof.
Theorem 3.2. Let R be NPP such that $ef = 0$ and $fe \neq 0$ for some $e, f \in E(R)$. Then, $o(e) = o(f) = o(fe)$. And if $o(e) < \infty$, then there exist $u, v \in E(R)$ and a prime p such that $o(u) = o(v) = o(uv) = p$ with $uv = 0$ but $vu \neq 0$.

Proof. Since R is NPP, by Theorem 3.1, R is not reduced. Since $ef = 0$, $fe \in N(R)$. So $l(fe) = R(1 - g)$ and $r(fe) = (1 - h)R$ for some $g, h \in E(R)$. These lead to $l(fe) = l(g)$ and $r(fe) = r(h)$. Thus $g = fg$ because $1 - f \in l(fe) = l(g)$, so $gf \in E(R)$ and $l(g) = l(gf)$. Hence $fe = gff e = gfe$ because $1 - gf \in l(gf) = l(g) = l(fe)$. Similarly, there exists $h \in E(R)$ such that $h = he, eh \in E(R), r(ef) = r(fe)$ and $fe = feh$. Hence, $fe = gfeh = (gf)(eh)$ and $(ef)(gf) = efgh = 0$. Clearly, $o(gf) = o(ef) = o(fe)$. So if $o(gf) = \infty$, there is nothing to prove. If $o(gf) = pk$, where p is a prime number. Then $o(kfe) = p$. By using similar arguments as above, we have $u, v \in E(R)$ such that $o(u) = o(v) = o(kfe)$ with $uv = 0$ but $vu \neq 0$. □

The following theorem also is a generalization of [3, Theorem 3.2].

Theorem 3.3. Let R be NPP. Then R is reduced if and only if R has no subrings which are isomorphic to $UT\mathbb{Z}_2$ or $UT(\mathbb{Z}_p)_2$, where p is a prime.

Proof. Since $UT\mathbb{Z}_2$ and $UT(\mathbb{Z}_p)_2$ both contain some non-commuting idempotents, by Theorem 3.1, the necessity part is clear.

To prove the sufficiency part, we suppose that R is not reduced. Then by Theorems 3.1 and 3.2, there exist $e, f \in E(R)$ such that $ef = 0$, $fe \neq 0$ and $o(e) = o(f) = o(fe)$; and $o(e) = o(f) = o(fe) = p$ if $o(e) < \infty$, where p is a prime. Consider the subring of R generated by e and f. Clearly, $0, e, f, fe$ forms a subsemigroup of R under ring multiplication and so $S = \{af + bfe + ce \mid a, b, c \in \mathbb{Z}\}$ forms a subring of R.

Now let $\theta : UT\mathbb{Z}_2 \rightarrow S$ defined by $\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \mapsto af + (b - c)fe + ce$. Then θ is a surjective homomorphism.

If $o(e) = o(f) = o(fe) = \infty$, then θ is an isomorphism.

If $o(e) = o(f) = o(fe) = p$, then $ker\theta = \{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \mid p|a, p|b, p|c \}$. Since $UT\mathbb{Z}_2/ker\theta \cong UT(\mathbb{Z}_p)_2$, $S \cong UT(\mathbb{Z}_p)_2$. This is a contradiction and therefore our proof is completed. □

A ring R is called left GC2 [9] if for $a \in R$ and $R Ra \cong_R R$, $Ra = Re$ for some $e^2 = e \in R$. A right GC2 ring is defined similarly. A ring R is called strongly regular if $a \in a^2 R$ for all $a \in R$. Since strongly regular rings are left and right C2
NPP rings, reduced rings and SNF rings

Theorem 3.4. The following conditions are equivalent for a ring R.

(1) R is strongly regular.
(2) R is abelian, left pp and left GC2.
(3) R is abelian, left pp and right GC2.
(4) R is von Neumann regular and $N(R)$ forms a left ideal of R.
(5) R is von Neumann regular and NI.
(6) R is von Neumann regular and 2-primal.

Proof. (1) ⇒ (2) and (1) ⇒ (6) ⇒ (5) ⇒ (4) are trivial.

(2) ⇒ (1) Let $a \in R$. Since R is left pp, $l(a) = Re, e^2 = e \in R$. Set $b = a + e$.
Then $l(b) \subseteq l(a) \cap l(e) = 0$ because R is abelian. Clearly, $(1 - e)b = (1 - e)a = a$. Since $gRb \cong_R R$ and R is left GC2, $Rb = Rg, g^2 = g \in R$. Hence $b = bg = gb$, so $g = 1$ because R is abelian and $l(b) = 0$. So $Ra = R(1 - e)b = (1 - e)Rb = (1 - e)Rg = (1 - e)R1 = (1 - e)R = R(1 - e)$, this implies R is von Neumann regular and so R is strongly regular because R is abelian.

Similarly, we can show (3) ⇒ (1).

(4) ⇒ (1) By (4), R is n-regular. Since $N(R)$ is a left ideal of R, R is reduced by Theorem 2.7. So R is strongly regular.

Recall that an additive subgroup L of a ring R is said to be a quasi-ideal if $xrx \in L$ and $xrx \in L$ whence $x \in L$ and $r \in R$. Obviously, every ideal of R is a quasi-ideal. But there exists an example of a (four-dimensional) Banach algebra A whose quasi-ideal Y is not an ideal, since $A = A * Y$ is the exterior (Grassmann) algebra on a two dimensional real vector space Y [5]. A ring R is called left MC2 if $l(k) = Re, e^2 = e \in R$ whence Rk is a projective minimal left ideal of R. By [8, Theorem 2.22], left NC2 rings are left MC2. But the converse is not true by [8, Remark 2.23]. A left R-module M is called Wnil-injective [8] if for any $0 \neq a \in N(R)$ (if there exists), there exists a positive integer n such that $a^n \neq 0$ and every left R-homomorphism from Ra^n to M extends to one from R to M. Clearly, left nil-injective modules and left YJ-injective modules [6] are all Wnil-injective.

Theorem 3.5. The following conditions are equivalent for a ring R.

(1) R is reduced.
(2) R is n-regular and $N(R)$ is a quasi-ideal of R such that $aN(R) = N(R)a$ for all $a \in N(R)$.

[7]; and left (resp. right) $C2$ rings are left (resp. right) GC2; strongly regular rings are left and right GC2.
(3) R is left MC2 and NI such that every simple singular left R–module is Wnil–injective.

(4) R is abelian and $N(R)$ forms a right ideal of R whose simple singular left R–modules are Wnil–injective.

(5) R is ZT and for any $a \in N(R)$, $l(Ra) = Re, e^2 = e \in R$.

Proof. $(1) \Rightarrow (i), i = 2, 3, 4, 5$ are clear.

$(2) \Rightarrow (1)$ By $(2), a = aba$ for all $a \in N(R)$. Since $N(R)$ is a quasi-ideal of R and $a \in N(R), bab \in N(R)$. Thus $ab = abab = a(bab) \in aN(R) = N(R)a$ and so $a = aba \in N(R)a^2$. This implies R is reduced.

$(3) \Rightarrow (1)$ Let $a \in R$ such that $a^2 = 0$. We claim that $RaR + l(a) = R$. If not, there exists a maximal left ideal M containing $RaR + l(a)$. If M is not essential in R, then $M = l(e), e^2 = e \in R$. Since R is left MC2 ring, R is semiprime by [8, Corollary 3.6]. Since $eaR \in RaR \subseteq M = l(e), eaRe = 0$. Hence $eaRea = 0$ and so $ea = 0$ because R is semiprime. Thus $e \in l(a) \subseteq M = l(e)$, which is a contradiction. Hence M is essential in R, and so R/M is Wnil–injective. This implies there exists $b \in R$ such that $1 - ab \in M$ and so $1 \in M$ because $ab \in RaR$, which is a contradiction. So $RaR + l(a) = R$ and then $a = ya$ for some $y \in RaR$. Since R is NI and $a \in N(R), y \in N(R)$. Hence $y^n = 0$ for some positive integer n. So $a = ya = y^2a = \cdots = y^na = 0$.

$(4) \Rightarrow (1)$ Let $a \in R$ with $a^2 = 0$. If $a \neq 0$, then $l(a) \neq R$, so there exists a left ideal L of R such that $l(a) \oplus L$ is essential in R. If $l(a) \oplus L \neq R$, there exists a maximal left ideal M of R containing $l(a) \oplus L$. Clearly, M is essential left ideal of R, by hypothesis, R/M is Wnil–injective. So there exists $c \in R$ such that $1 - ac \in M$. Since $N(R)$ is a right ideal of $R, ac \in N(R)$, so $1 - ac$ is invertible. Hence $M = R$, which is a contradiction. This shows $l(a) \oplus L = R$. Let $l(a) = Re, e^2 = e \in R$. Clearly, $a = ac = ea = 0$, which is a contradiction. So $a = 0$.

$(5) \Rightarrow (1)$ Let $a^2 = 0$. By $(5), l(Ra) = Re$. Let $x \in l(a)$. Then $xa = 0$, so $xRa = 0$ because R is ZT. Hence $x \in l(Ra)$, this shows that $l(a) = l(Ra)$ and so $l(a) = Re$. Since R is ZT, R is abelian. So $a = 0$. □

Theorem 3.6. The following conditions are equivalent for a ring R.

(1) R is reduced.

(2) R is ZC and every essential maximal left ideal of R is Wnil–injective.

(3) R is semiprime left nonsingular and for any $a \in N(R), Ra$ is an ideal of R.

(4) R is semiprime left nonsingular and for any $a \in N(R), Ra$ is a left annihilator of a left ideal of R.

The following conditions are equivalent for a ring R:

(1) R is regular.

(2) Every left R–module is $Wnil$–injective.

(3) Every cyclic left R–module is $Wnil$–injective.

(4) R is left $Wnil$–injective and left NPP.

Proof. (1) \Rightarrow (4) \Rightarrow (3) and (1) \Rightarrow (2) are trivial.

(2) \Rightarrow (1) Let $a \in R$ with $a^2 = 0$ and L a left ideal of R such that $l(a) \oplus L$ is essential left ideal of R. If $l(a) \oplus L \neq R$, then there exists an essential maximal left ideal M of R containing $l(a) \oplus L$. By hypothesis, R_M is $Wnil$–injective. So the inclusion map $Ra \hookrightarrow M$ can be extended to $R \longrightarrow M$, this implies $a = am$ for some $m \in M$. Since R is ZC, $a = ma$. So $1 - m \in l(a) \subseteq M$, which is a contradiction. So $l(a) \oplus L = R$. Then, clearly, $a = 0$ because R is abel.

(3) \Rightarrow (1) Let $a^2 = 0$ and L a left ideal of R such that $l(a) \cap L = 0$. Since Ra is an ideal of R, $aL \subseteq Ra$. Hence $aL \subseteq l(a) \cap L = 0$, so $(La)^2 = 0$. Since R is semiprime, $La = 0$. So $L \subseteq l(a)$ and then $L = 0$. Therefore $l(a)$ is an essential left ideal of R. But R is left nonsingular, so $a = 0$.

4. n–regular rings

In [8, Theorem 2.18], we have shown that a ring R is n–regular if and only if every left R–module is nil–injective. Since nil–injective modules are $Wnil$–injective, we can generalize this theorem as follows:

Theorem 4.1. The following conditions are equivalent for a ring R.

(1) R is n–regular.

(2) Every left R–module is $Wnil$–injective.

(3) Every cyclic left R–module is $Wnil$–injective.

(4) R is left $Wnil$–injective and left NPP.

Proof. (1) \Rightarrow (2) \Rightarrow (3) and (1) \Rightarrow (4) are trivial.

(3) \Rightarrow (1) Let $a \in N(R)$. By (3), R_R is $Wnil$–injective. If $a^2 = 0$, then the identity map $I : Ra \longrightarrow Ra$ can be extended to $R \longrightarrow R$, this implies there exists $b \in R$ such that $a = aba$. If $a^2 \neq 0$, then there exists a positive integer n such that $a^n \neq 0$ and any left R–homomorphism $Ra^n \longrightarrow Ra$ can be extended to $R \longrightarrow Ra$. Set $f : Ra^n \longrightarrow Ra$ is the inclusion map, then, clearly, $f = ca, c \in R$. So $a^n = f(a^n) = a^nca$. Let $d = a^{n-1} - a^{n-1}ca$. Then $d^2 = 0$. By the above proof, we can obtain that $d = a^{n-1} - a^{n-1}ca$ is regular element of R. By [1, Lemma 2.1], $a^{n-1} = a^{n-1}da$ for some $d \in R$. Repeating the above-mentioned process, we can obtain $v \in R$ such that $a = avv$.

(4) \Rightarrow (1) Let $0 \neq a \in N(R)$. Since R is left $Wnil$–injective, there exists a positive integer n such that $a^n \neq 0$ and $rl(a^n) = a^nR$. Since R is left NPP and $a^n \in N(R)$, $l(a^n) = R(1 - e), e^2 = e \in R$. Hence $eR = r(R(1 - e)) = rl(a^n) = a^nR$. This implies that a^n is a regular element of R. If $a^2 = 0$, the argument above shows
that a is a regular element. So, by [1, Theorem 2.2], even if $a^2 \neq 0$, a is also a regular element of R.

It is well known that R is von Neumann regular if and only if every essential left ideal of R is YJ–injective. And note that the direct summand of a nil–injective (resp. $Wnil$–injective) module is nil–injective (resp. $Wnil$–injective). So we can give the following theorem:

Theorem 4.2. The following conditions are equivalent for a ring R.

1. R is n–regular.
2. Every essential left ideal of R is nil–injective as left R–module.
3. Every essential left ideal of R is $Wnil$–injective as left R–module.
4. Every direct product (or sum) of cyclic left R–modules is nil–injective.
5. Every direct product (or sum) of cyclic left R–modules is $Wnil$–injective.
6. R is left nil–injective and cyclic singular left R–modules are nil–injective.

Proof. (1) \Rightarrow (2) \Rightarrow (3) and (6) \Leftrightarrow (1) \Leftrightarrow (4) \Leftrightarrow (5) follows from Theorem 4.1 and [8, Theorem 2.18].

(3) \Rightarrow (1) Let $a \in R$ with $a^2 = 0$. Clearly there exists a left ideal L of R such that $Ra \oplus L$ is essential left ideal of R. By (3), $Ra \oplus L$ is $Wnil$–injective, so Ra is $Wnil$–injective. Hence, by the proof of (3) \rightarrow (1) in Theorem 4.1, we have $a = aba$ for some $b \in R$.

A right R–module M is called $Nflat$ if for any $a \in N(R)$, the map $1_M \otimes i : M \otimes_R Ra \rightarrow M \otimes_R R$ is monic, where $i : Ra \rightarrow R$ is the inclusion map. Clearly, flat modules are $Nflat$.

By definition, we know that every module over any reduced ring is $Nflat$. Since there exists a reduced ring R which is not von Neumann regular, there exists a module over R which is not flat. So there exists a $Nflat$ module which is not flat. The following proposition is trivial.

Proposition 4.3. (1) The direct sum $\bigoplus_{i \in I} M_i$ of left R–modules $\{M_i | i \in I\}$ is $Nflat$ if and only if each M_i is $Nflat$.

(2) If $\{M_i | i \in I\}$ is a direct system of $Nflat$ modules, then the direct limit of these modules is also $Nflat$.

(3) If every finitely generated submodule of a right R–module M is $Nflat$, then M is $Nflat$.

(4) If M_R is a module such that every cyclic submodule of M is contained in a $Nflat$ submodule then M is $Nflat$.
Let R and S be rings and B an (S,R)–bimodule. Then for any left R–module A and left S–module C, we have a left \mathbb{Z}–module isomorphism map:

$$\tau_{A,C} : \text{Hom}_S(B \otimes_R A, C) \rightarrow \text{Hom}_R(A, \text{Hom}_S(B, C))$$

where $\tau_{A,C}(h) : A \rightarrow \text{Hom}_S(B, C)$

$$a \mapsto \tau_{A,C}(h)(a)$$

satisfies $\tau_{A,C}(h)(a)(b) = h(b \otimes a)$ for all $b \in B$.

Theorem 4.4. Let R and S be rings, B an (S,R)–bimodule. If B_R is Nflat, C is injective left S–module, then as a left R–module, $\text{Hom}_S(B,C)$ is nil–injective.

Proof. Let $a \in N(R)$ and $f : Ra \rightarrow \text{Hom}_S(B,C)$ be any left R–homomorphism. Since B_R is Nflat, $1_B \otimes i : B \otimes_R Ra \rightarrow B \otimes_R R$ is monic. Since S_C is injective, $(1_B \otimes i)^* : \text{Hom}_S(B \otimes_R R,C) \rightarrow \text{Hom}_S(B \otimes_R Ra,C)$ is epic. Since we have the following commutating diagram:

$$\begin{array}{cccc}
\text{Hom}_S(B \otimes_R C) & \xrightarrow{\tau_{R,C}} & \text{Hom}_R(R, \text{Hom}_S(B,C)) \\
(1_B \otimes i)^* & & & i^* \\
\text{Hom}_S(B \otimes Ra, C) & \xrightarrow{\tau_{Ra,C}} & \text{Hom}_R(Ra, \text{Hom}_S(B,C))
\end{array}$$

$i^* : \text{Hom}_R(R, \text{Hom}_S(B,C)) \rightarrow \text{Hom}_R(Ra, \text{Hom}_S(B,C))$ is epic. Hence there exists a left R–homomorphism $h : R \rightarrow \text{Hom}_S(B,C)$ such that $i^*(h) = f$, that is $hi = f$ or equivalently, $h|_{Ra} = f$. This shows that $\text{Hom}_S(B,C)$ is nil–injective as a left R–module. \qed

Theorem 4.5. Right R–module B is Nflat if and only if $B^* \overset{\text{def}}{=} \text{Hom}_Z(B, \mathbb{Q}/\mathbb{Z})$ is nil–injective, where \mathbb{Q} is the field of real numbers.

Proof. Let B be Nflat. Since \mathbb{Q}/\mathbb{Z} is an injective left \mathbb{Z}–module, B^* is nil–injective as a left R–module by Theorem 4.4.

Converse, assume that B^* is a nil–injective left R–module. Let $a \in N(R)$. We show that $1_B \otimes i : B \otimes Ra \rightarrow B \otimes R$ is monic.

Since we have the following commutating diagram:

$$\begin{array}{cccc}
\text{Hom}_Z(B \otimes_R R, \mathbb{Q}/\mathbb{Z}) & \xrightarrow{\tau_{R,\mathbb{Q}/\mathbb{Z}}} & \text{Hom}_R(R, \text{Hom}_Z(B, \mathbb{Q}/\mathbb{Z})) \\
(1_B \otimes i)^* & & & i^* \\
\text{Hom}_Z(B \otimes Ra, \mathbb{Q}/\mathbb{Z}) & \xrightarrow{\tau_{Ra,\mathbb{Q}/\mathbb{Z}}} & \text{Hom}_R(Ra, \text{Hom}_Z(B, \mathbb{Q}/\mathbb{Z}))
\end{array}$$

where $\tau_{R,\mathbb{Q}/\mathbb{Z}}$ and $\tau_{Ra,\mathbb{Q}/\mathbb{Z}}$ are \mathbb{Z}–isomorphism, $(1_B \otimes i)^*$ is epic if and only if i^* is epic.
Since $B^* = \text{Hom}_\mathbb{Z}(B, \mathbb{Q}/\mathbb{Z})$ is nil–injective left R–module, i^* is epic. Hence $(1_B \otimes i)^*$ is also epic. Since \mathbb{Q}/\mathbb{Z} is a cogenerator in \mathbb{Z}–module category, $(1_B \otimes i)$ is a monic. This shows that B_R is $Nflat$. □

Theorem 4.6. (1) Let B be an $Nflat$ right R–module and $a \in N(R)$. Then there exists a unique \mathbb{Z}–module isomorphism $\theta : B \otimes Ra \longrightarrow Ba$ satisfies $\theta(b \otimes ra) = bra$ for all $b \in B$ and $r \in R$.

(2) Let B be a right R–module and there exists a right R–short exact sequence:

$$0 \longrightarrow K \overset{J}{\longrightarrow} F \overset{g}{\longrightarrow} B \longrightarrow 0$$

where F is $Nflat$. Then B_R is $Nflat$ if and only if $K \cap Fa = Ka$ for all $a \in N(R)$.

(3) Let M_R be $Nflat$ and U a submodule of M_R. Then M/U is $Nflat$ if and only if $Ua = U \cap Ma$ for all $a \in N(R)$.

(4) Let I be a right ideal of R. Then R/I is $Nflat$ right R–module if and only if $Ia = I \cap Ra$ for all $a \in N(R)$.

Proof. (1) Let $f : B \times Ra \longrightarrow Ba$ satisfy $f((b, ra)) = bra, b \in B, r \in R$. Clearly, f is an R–tensorial mapping, so there exists a unique \mathbb{Z}–homomorphism

$$\theta : B \otimes Ra \longrightarrow Ba, \quad b \otimes ra \longmapsto bra$$

such that the following diagram is commutative:

$$\begin{array}{ccc}
B \times Ra & \xrightarrow{h} & B \otimes Ra \\
\downarrow f & & \downarrow \theta \\
Ba & \xrightarrow{I} & Ba
\end{array}$$

where $I : Ba \longrightarrow Ba$ is the identity mapping and $h : B \times Ra \longrightarrow B \otimes Ra, b \times ra \longmapsto b \otimes ra$.

Clearly, $\theta(b \otimes ra) = bra$ and θ is epic. Since B_R is $Nflat$, $1_B \otimes i : B \otimes Ra \longrightarrow B \otimes R$ is monic. Since $\psi : B \otimes R \longrightarrow B, b \otimes 1 \longmapsto b$ is a \mathbb{Z}–isomorphism, $\theta = \psi(1_B \otimes i)$ is monic. Hence θ is an isomorphism.

(2) Since $\otimes Ra$ is right exact, there is an exact sequence:

$$K \otimes Ra \overset{j \otimes 1}{\longrightarrow} F \otimes Ra \overset{g \otimes 1}{\longrightarrow} B \otimes Ra \longrightarrow 0.$$

Since F_R is $Nflat$, by (1), there exists a unique \mathbb{Z}–isomorphism $\rho : F \otimes Ra \longrightarrow Fa$ satisfying $\rho(x \otimes ra) = xra$ for all $x \in F$ and $r \in R$. So there is a \mathbb{Z}–epic mapping $(g \otimes 1)\rho^{-1} : Fa \longrightarrow B \otimes Ra$. Since $\text{Ker}((g \otimes 1)\rho^{-1}) = Ka$, there is a
Z–isomorphism $\gamma : Fa/Ka \longrightarrow B \otimes Ra$ satisfying $\gamma(xa + Ka) = g(x) \otimes a$ for all $x \in F$.

On the other hand, $\delta : Ba \longrightarrow Fa/(K \cap Fa)$ defined by $\delta(ba) = xa + (K \cap Fa)$, where $g(x) = b, x \in F, b \in B$ is Z–isomorphism. Hence we obtain Z–homomorphism $\sigma = \delta \theta \gamma : Fa/Ka \longrightarrow Fa/K \cap Fa$ satisfying $\sigma(xa + Ka) = xa + (K \cap Fa)$, $x \in F$.

Since $Ka \subseteq K \cap Fa$, σ is a Z–isomorphism mapping if and only if $Ka = K \cap Fa$.

The if part: Assume that B_R is N_{flat}, By (1), $\theta : B \otimes Ra \longrightarrow Ba$ is a Z–isomorphism mapping, so $Ka = K \cap Fa$.

The only if part: Since $Ka = K \cap Fa$ for all $a \in N(R)$, $\theta : B \otimes Ra \longrightarrow Ba$ is a Z–isomorphism mapping. By the following commutating diagram:

\[
\begin{array}{ccc}
B \otimes Ra & \xrightarrow{1_b \otimes i} & B \otimes R \\
\downarrow \theta & & \downarrow \psi \\
Ba & \xrightarrow{i} & B
\end{array}
\]

where $i : Ba \hookrightarrow B$ is the inclusion mapping, we have that $1_B \otimes i$ is monic. Hence B_R is N_{flat}.

(3) and (4) follow from (2). \qed

Theorem 4.7. The following conditions are equivalent for a ring R.

(1) R is n–regular.

(2) Every right R–module is N_{flat}.

(3) Every cyclic right R–module is N_{flat}.

Proof. (2) \Rightarrow (3) is trivial.

(1) \Rightarrow (2) Let M be any right R–module. Then there is a right R–short exact sequence $0 \longrightarrow K \xrightarrow{i} F \xrightarrow{\pi} M \longrightarrow 0$ where F_R is free. For any $a \in N(R)$, we always have $Ka \subseteq K \cap Fa$. Let $x \in K \cap Fa$. Then $x = za$ for some $z \in F$. Since R is n–regular and $a \in N(R)$, $a = aba$ for some $b \in R$. Set $e = ba$, then $a = ae$ and $e = e^2 = ba \in Ra$. Clearly, $x = za = zae = xe \in Ka$. This shows that $Ka = K \cap Fa$ for all $a \in N(R)$ and so M_R is N_{flat}.

(3) \Rightarrow (1) Let $a \in N(R)$. Since R/aR is a cyclic right R–module, R/aR is N_{flat} by (3). In terms of the following right R–short exact sequence

\[
0 \longrightarrow aR \xrightarrow{i} R \xrightarrow{\pi} R/aR \longrightarrow 0
\]

we have $aRa = aR \cap Ra$. So $a \in aR \cap Ra = aRa$. Thus R is n–regular. \qed
Call a ring \(R \) left (resp. right) SNF if every simple left (resp. right) \(R \)-module is \(N \text{flat} \). By Theorem 4.7, \(n \)-regular rings are SNF. Call a ring \(R \) is left (resp. right) quasi-duo if every maximal left (resp. right) ideal of \(R \) is an ideal. A ring \(R \) is called MELT (resp. MERT) if every essential maximal left (resp. right) ideal of \(R \) is an ideal. A ring \(R \) is called left SF if every simple left \(R \)-module is flat.

Clearly, a left SF ring is left SNF, but the converse is not true. Because there exists a reduced MELT ring \(R \) which is not von Neumann regular, there exists a reduced MELT ring \(R \) which is not left SF by [10, Theorem 1]. On the other hand, by Theorem 4.7, reduced rings are left SNF, so there exists a left SNF ring which is not left SF.

Theorem 4.8. \(R \) is \(n \)-regular if and only if \(R \) is right SNF and every maximal submodule of any cyclic right \(R \)-module is \(N \text{flat} \).

Proof. The necessity follows from Theorem 4.7.

The sufficiency: Let \(a \in N(R) \). Then \(aR \neq R \), so there exists a maximal right ideal \(M \) of \(R \) such that \(aR \subseteq M \). Since \((R/aR)/(M/aR) \cong R/M \), \(M/aR \) is a maximal submodule of cyclic right \(R \)-module \(R/aR \). So \(M/aR \) is \(N \text{flat} \) by hypothesis. Since \(M \) is a maximal submodule of cyclic right \(R \)-module \(R \), \(M \) is \(N \text{flat} \). In terms of Theorem 4.6 and the following right \(R \)-short exact sequence:

\[
0 \rightarrow aR \overset{j}{\rightarrow} M \overset{\pi}{\rightarrow} M/aR \rightarrow 0
\]

we have \(aRa = aR \cap Ma \) because \(a \in N(R) \). Since \(R \) is right \(SNF \) ring and \(R/M \) is simple right \(R \)-module, \(R/M \) is \(N \text{flat} \). Hence, by Theorem 4.6, \(Ma = M \cap Ra \), so \(a \in M \cap Ra = Ma \). Thus \(a \in Ma \cap aR = aRa \), obtaining that \(R \) is \(n \)-regular. \(\square \)

Theorem 4.9. (1) Let \(R \) be left quasi-duo. Then \(R \) is reduced if and only if \(R \) is right \(SNF \).

(2) Let \(R \) be right \(SF \). Then

(a) If \(R \) is MELT, then \(R \) is left nonsingular;

(b) If \(R \) is left MC2 and MELT, then \(R \) is semiprime and right nonsingular.

(3) Let \(R \) be right \(SNF \). If \(r(M) \) is essential in \(R_R \) for all maximal right ideal \(M \) of \(R \), then \(R \) is reduced.

(4) \(R \) is reduced if and only \(R \) is \(ZC \) and right \(SNF \).

Proof. (1) The if part is clear by Theorem 4.7.

The only if part: Let \(a \in R \) with \(a^2 = 0 \). If \(a \neq 0 \), then there exists a maximal left ideal \(M \) containing \(l(a) \). Since \(R \) is left quasi-duo, \(M \) is an ideal of \(R \). So there exists a maximal right ideal \(L \) of \(R \) such that \(M \subseteq L \). Since \(R/L \) is a simple right

$x \in M$ give a contradiction. Hence can show that $a = 0$ and so R is reduced.

(2) (a) If $Z_l(R) \neq 0$, then there exists a $0 \neq a \in Z_l(R)$ such that $a^2 = 0$. So there exists a maximal left ideal M of R containing $l(a)$. Clearly, M is an essential left ideal. Since R is $MELT$, M is an ideal of R. By the proof of (1), we can obtain a contradiction. Hence $Z_l(R) = 0$.

(b) First, we show that R is semiprime. Let $a \in R$ satisfy $aRa = 0$. If $a \neq 0$, then there exists a maximal left ideal M of R containing $l(a)$. If M is not an essential left ideal of R, then $M = l(e)$ for some $e^2 = e \in R$. Since $RaR \subseteq l(a)$, $aRe = 0$. Since R is left MC2, $eRa = 0$. So $e \in l(a) \subseteq M = l(e)$, which is a contradiction. Hence M is an essential left ideal. The rest proof is similar to (1).

Next, we show that $Z_r(R) = 0$. If not, there exists a $0 \neq a \in Z_r(R)$ such that $a^2 = 0$. We claim that $Z_r(R) + l(a) = R$. If not, there exists a maximal left ideal M of R containing $Z_r(R) + l(a)$. Since R is left MC2, similar to the proof of (a), we can show that M is an essential left ideal. By the proof proceeding of (1), we shall give a contradiction. Hence $Z_r(R) + l(a) = R$. Let $1 = z + x$, where $z \in Z_r(R)$ and $x \in l(a)$. Then $a = za$ and so $(1 - z)a = 0$. Since $z \in Z_r(R)$ and $r(z) \cap r(1 - z) = 0$, $r(1 - z) = 0$. Hence $a = 0$, which is a contradiction. This shows that R is right nonsingular.

(3) Let $a \in R$ satisfy $a^2 = 0$. If $a \neq 0$, then $r(a) \subseteq M$ where M is a maximal right ideal of R. Since R is right SNF, R/M is an $N\text{flat}$ right R–module. By Theorem 4.6, $a = xa$ for some $x \in M$, so $a \in r(1 - x)$. Since $r(M) \subseteq r(x)$ and $r(M)$ is an essential right ideal of R, $x \in Z_r(R)$. Hence $r(1 - x) = 0$, which implies that $a = 0$, which is a contradiction. Thus $a = 0$.

(4) Let $a \in R$ satisfy $a^2 = 0$. If $a \neq 0$, then, similar to the proof of (3), there exists $x \in M$ such that $a = xa$ where M is a maximal right ideal of R containing $r(a)$. Since R is ZC, $a = ax$. Hence $1 - x \in r(a) \subseteq M$ and so $1 \in M$, which is a contradiction. Thus $a = 0$.

\[\Box\]

References

Math. Sci.
(1967), 365-373.
Roumanie Tome, 46 (2003), 87-97.
Algebra, 29 (2001), 2429-2466.
1-21.

Junghao Wei and Jianhua Chen

School of Mathematics Science,
Yangzhou University,
Yangzhou, 225002, Jiangsu, P. R. China
e-mails: jcweiyz@yahoo.com.cn (J. Wei)
cjh_m@yahoo.com.cn (J. Chen)