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Abstract. Let R be a ring, M be a left R-module and Spec(RM) be the

collection of all prime submodules of M . In this paper and its sequel, we in-

troduce and study a generalization of the Zariski topology of rings to modules

and call it classical Zariski topology of M . Then we investigate the interplay

between the module-theoretic properties of M and the topological properties

of Spec(RM). Modules whose classical Zariski topology is respectively T1,

Hausdorff or cofinite are studied, and several characterizations of such mod-

ules are given. We investigate this topological space from the point of view of

spectral spaces (that is, topological spaces homeomorphic to the prime spec-

trum of a commutative ring equipped with the Zariski topology). We show

that Spec(RM) is always a T0-space and each finite irreducible closed subset of

Spec(RM) has a generic point. Then by applying Hochster’s characterization

of a spectral space, we show that for each left R-module M with finite spec-

trum, Spec(RM) is a spectral space. In Part II we shall continue the study of

this construction.
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1. Introduction

Throughout, all rings are associative rings with identity elements, and all mod-

ules are unital left modules. The symbol ⊆ denotes containment and ⊂ proper

containment for sets. If N is a submodule (respectively proper submodule) of a

module M we write N ≤ M (respectively N �M). We denote the left annihilator

of a factor module M/N of M by (N : M). We call M faithful if (0 : M) = 0.

Recall that the spectrum Spec(R) of a ring R consists of all prime ideals of R.

For every ideal I of R, we set V (I) = {P ∈ Spec(R) : I ⊆ P}. Then the sets V (I)

satisfy the axioms for the closed sets of a topology on Spec(R), called the Zariski
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topology (see for example, [4, 18]). In the literature, there are many different

generalizations of the Zariski topology for modules over commutative rings. First,

we need to define what we shall mean by a prime submodule of a module.

Recall that a left R-module M is said to be prime if Ann(N) = Ann(M) for

every non-zero submodule N of M . Both Goodearl-Warfield [18] and McConnell-

Robson [34] use the phrase “prime submodule” to mean “submodule that is prime”

(for example, by this notion every Z-submodule of M := Z is a prime submodule);

but Dauns [15] and McCasland-Smith [33] use the phrase “prime submodule” for a

submodule P of M , such that M/P is a prime module i.e., for every ideal A ⊆ R

and every submodule N ⊆ M , if AN ⊆ P , then either N ⊆ P or AM ⊆ P (see,

for example, [6-12, 15, 23, 24, 25, 27-32, 41, 44]).

In this paper we use the latter notion of prime submodule, and we recall that

the spectrum Spec(RM) of a module M consists of all (Dauns)-prime submodules

of M . As in [29], for any submodule N of a left R-module M we define V (N) to

be the set of all prime submodules of M containing N . Of course, V (M) is just

the empty set and V (0) is Spec(RM). Note that for any family of submodules Ni

(i ∈ I) of M ,
⋂

i∈I V (Ni) = V (
∑

i∈I Ni). Thus if V(M) denotes the collection of

all subsets V (N) of Spec(RM), then V(M) contains the empty set and Spec(RM),

and V(M) is closed under arbitrary intersections. Unfortunately, in general, V(M)

is not closed under finite union. A module M is called a top module if V(M) is

closed under finite unions, i.e. for any submodules N and L of M there exists a

submodule J of M such that V (N) ∪ V (L) = V (J), for in this case V(M) satisfies

the axioms for the closed subsets of a topological space (see [29] for more details).

A module M over a commutative ring R is called a multiplication module if each

submodule of M is of the form IM , where I is an ideal of R (see for example, [1, 5,

16, 36, 44]). Any multiplication module over a commutative ring R is a top module,

and a finitely generated module M over a commutative ring R is a top module if

and only if M is a multiplication module (see [29, Theorem 3.5], and see [22], for

another generalization of the Zariski topology to modules over commutative rings).

In this article, we introduce and study a new generalization of the Zariski topol-

ogy of rings to modules. Let M be a left R-module. For each submodule N of M ,

we define W (N) = Spec(RM) \ V (N) and put W(M) = {W (N) : N ≤ M}. Then

we define T (M) to be the topology on Spec(RM) by the sub-basis W(M) and call

it the classical Zariski topology of M . In fact T (M) to be the collection U of all

unions of finite intersections of elements of W(M) (see for example [26, Page 82] for

the definition of basis and sub-basis). This notion of classical Zariski topology of a
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module is analogous to that of the weak Zariski topology of a ring (see [37, 38, 43],

for more details; in fact, Sun [37] first investigated the weak Zariski topology on

Spec(RR)). Also, the classical Zariski topology and the Zariski topology considered

in [22] agree for all multiplication modules over a commutative ring R. But for a

non-commutative ring R, the usual Zariski topology of the ring R is considered in

[18] is a subspace of the classical Zariski topology of RR

Modules whose classical Zariski topology is respectively T1, Hausdorff or cofinite

are established in the body of Section 2. For example we show that for each R-

module M , Spec(RM) is a T1-space if and only if dim(M) ≤ 0 (dim(M) is prime

dimension of M). In particular, if M is a finitely generated module, then Spec(RM)

is a T1-space if and only if M is a multiplication module with dim(M) = 0. This

yields that for a Noetherian left R-module M , Spec(RM) is a T1-space if and only

if M is a cyclic Artinian module. In Theorem 2.22, we give a characterization

for modules M for which the classical Zariski topology is the cofinite topology.

Also, we show that over a commutative ring R, Noetherian modules whose classical

Zariski topology is the cofinite topology are precisely the Artinian cyclic modules.

In some instance we characterize modules whose classical Zariski topology is Haus-

dorff. For example, it is shown that for a semisimple module M , Spec(RM) is

a Hausdorff space if and only if Spec(RM) is a T1-space, if and only if M is a

direct sum of non-isomorphic simple modules. In Section 3, we investigate this

topological space Spec(RM) from the point of view of spectral spaces, topological

spaces each of which is homeomorphic to Spec(S) for some commutative ring S.

Hochster [20] has characterized spectral spaces as quasi-compact T0-spaces X such

that X has a quasi-compact open basis closed under finite intersection and each

irreducible closed subset of X has a generic point. We show that for each left R-

module M , Spec(RM) is always a T0-space and each finite irreducible closed subset

of Spec(RM) has a generic point, but Spec(RM) is not quasi-compact in general

(Proposition 3.8 and Example 2.23). This yields that for each left R-module M

with finite spectrum, Spec(RM) is always a spectral space. Finally, in Corollary

3.12 we show that for every finitely generated multiplication module M over a com-

mutative ring R, Spec(RM) is a spectral space.
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2. Modules whose classical Zariski topology is respectively T1,

Hausdorff or cofinite

Let M be a left R-module. Recall that a proper submodule P of M is called

a semiprime submodule if A2N ⊆ P , where N ≤ M and A is an ideal of R, then

AN ⊆ P . Also, M is called a semiprime module if (0) � M is semiprime.

For an element a ∈ R, let us write (a) for the ideal generated by a in R. The

following two propositions offer several characterizations of prime submodules and

semiprime submodules respectively (see also [6, 8]).

Proposition 2.1. Let M be a left R-module. For a proper submodule P of M , the

following statements are equivalent:

(1) P is prime.

(2) For a ∈ R and m ∈ M , (a)m ⊆ P implies that m ∈ P or (a)M ⊆ P .

(3) For a ∈ R and m ∈ M , a(Rm) ⊆ P implies that m ∈ P or aM ⊆ P .

(4) For a left ideal A in R and m ∈ M , A(Rm) ⊆ P implies that m ∈ P or

AM ⊆ P .

(5) For a right ideal A in R and m ∈ M , Am ⊆ P implies that m ∈ P or

AM ⊆ P .

(6) for every 0 6= m ∈ M/P , (0 : Rm) is a prime ideal and (0 : Rm) = (P : M).

(7) (P : M) is a prime ideal and the set {(0 : Rm) : 0 6= m ∈ M/P} is singleton.

Proposition 2.2. Let M be a left R-module. For a proper submodule P of M , the

following statements are equivalent:

(1) P is semiprime.

(2) For a ∈ R and m ∈ M , (a)2m ⊆ P implies that (a)m ⊆ P .

(3) For a ∈ R and m ∈ M , aRa(Rm) ⊆ P implies that aRm ⊆ P .

(4) For any left ideal A in R and m ∈ M , A2(Rm) ⊆ P implies that A(Rm) ⊆ P .

(5) For any right ideal A in R and m ∈ M , A2m ⊆ P implies that Am ⊆ P .

(6) for every 0 6= m ∈ M/P , (0 : Rm) is a semiprime ideal.

In this case (P : M) is a semiprime ideal of R.

Let R be a ring and M be a left R-module. A submodule P of M will be called

maximal prime if P is a prime submodule of M and there is no prime submodule

Q of M such that P ⊂ Q. Also, P is called virtually maximal if the factor module

M/P is a homogeneous semisimple module (see for example [6,12], for various other

maximality conditions on submodules and relationship between those conditions).
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Next, we shall investigate the cases M when satisfies the following condition:

(∗) For any submodules N1, N2 ≤ M , V (N1) = V (N2) implies that N1 = N2.

Let R be a simple ring and M be a nonzero R-module. By Proposition 2.1,

every proper submodule of M is a prime submodule. Thus one can easily see that

M satisfies the (∗) condition. In particular every vector space satisfies the (∗)
condition.

Proposition 2.3. Let M be a nonzero left R-module. Then the following state-

ments are equivalent:

(1) M satisfies the (∗) condition.

(2) Every proper submodule of M is an intersection of prime submodules.

Proof. (1) ⇒ (2) Assume N1 is a proper submodule of M . We claim that V (N1) 6=
∅, for if not, then V (N1) = V (M) = ∅ and so N1 = M , a contradiction. Now let

N2 =
⋂

P∈V (N1)
P. Clearly V (N1) = V (N2), and so by our hypothesis N1 = N2. It

follows that N1 is an intersection of prime submodules.

(2) ⇒ (1) Clearly, a submodule N of M is an intersection of prime submodules if

and only if N =
⋂

P∈V (N) P. Thus we are thorough. ¤

We recall that if U , M are R−modules, then following Azumaya U is called

M−injective if for any submodule N of M , each homomorphism N −→ U can

be extended to M −→ U and, a left R-module M is called co-semisimple if every

simple module is M−injective i.e., every proper submodule of M is an intersection

of maximal submodule (see for example [42]). Every semisimple module is of course

co-semisimple. Thus by Proposition 2.3 we have the following corollary.

Corollary 2.4. Every co-semisimple module M satisfies the (∗) condition.

A prime ring R will be called left bounded if, for each regular element c in R,

there exists an ideal A of R and a regular element d such that Rd ⊆ A ⊆ Rc. A

general ring R will be called left fully bounded if every prime homomorphic image

of R is left bounded. A ring R is called a left FBN-ring if R is left fully bounded

and left Noetherian. It is well known that if R is a PI-ring (ring with polynomial

identity) and P is a prime ideal of R, then the ring R/P is (left and right) bounded

and (left and right) Goldie (see [34, 13.6.6]).

Remark 2.5. In general the converse of Corollary 2.4 is not true. For example, any

module M over a simple ring R satisfies the (∗) condition, but M is not necessarily
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a co-semisimple R-module. In this section we shall show that if R is a ring such

that R/P is Artinian for every left primitive ideal P, then the converse of Corollary

2.4 is true for all R-modules (see Theorem 2.9 and also Corollary 2.6).

We call an R-module M to be fully prime (respectively fully semiprime) if each

proper submodule of M is prime (respectively semiprime). Fully prime and fully

semiprime modules over commutative rings are characterized in [9] (for instance, it

is shown that a module M over a commutative ring R is fully prime (respectively

fully semiprime) if and only if M is a homogeneous semisimple (respectively co-

semisimple module). The following corollary shows that over a commutative ring

R, the set of all modules with (∗) condition and the set of all co-semisimple modules

coincide.

Corollary 2.6. Let R be a commutative ring and M be an R-module. Then the

following statements are equivalent:

(1) M satisfies the (∗) condition.

(2) M is a fully semiprime module.

(3) M is a co-semisimple module.

Proof. (1) ⇒ (2) is by Proposition 2.3.

(2) ⇒ (3) is by [9, Theorem 2.3].

(3) ⇒ (1) is by Corollary 2.4. ¤

In [9, Corollary 1.9], the authors proved that a co-semisimple module M over a

commutative ring R is prime if and only if M is a homogeneous semisimple module.

Thus we have the following corollary.

Corollary 2.7. Let R be a commutative ring and M be a prime R-module. Then

the following statements are equivalent:

(1) M satisfies the (∗) condition.

(2) M is fully prime.

(3) M is a homogeneous semisimple module.

Lemma 2.8. Let R be a PI-ring (or an FBN-ring), and let M be a left R-module.

If either R is an Artinian ring or M is an Artinian module, then M has a max-

imal submodule if and only if M has a prime submodule. In addition if M has a

prime submodule, then every prime submodule of M is an intersection of maximal

submodules.
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Proof. First, we assume that R is a left Artinian PI-ring (or an FBN-ring), M is a

left R-module and P is a prime submodule of M . Then P = (P : M) is a maximal

(prime) ideal of R and so the ring R := R/P is simple Artinian. Thus M = M/P is

a direct sum of isomorphic simple R-modules. It follows that M is a homogeneous

semisimple R module. Thus P is an intersection of maximal submodules of M .

Now let R be a PI-ring (or an FBN-ring), M be an Artinian module and P be a

prime submodule of M .

Suppose that P = (P : M), M := M/P and R := R/P. Since M is an Artinian

R-module, M is an Artinian R-module. Suppose Rm is a simple submodule of

M . Since M is a prime module, Ann(Rm) = Ann(M) and so Rm is an R-module.

Since R is a prime left bounded, left Goldie ring, by [18, Proposition 9.7], R embeds

as a left R-module in some finite direct sum of copies of Rm. Thus R is Artinian

and simple, therefore R-module M is a direct sum of copies of isomorphic simple

modules. It follows that M is a homogeneous semisimple R-module. Thus P

contain in maximal submodule of M . ¤

Theorem 2.9. Let R be a ring such that R/P is Artinian for every left primitive

ideal P. Then the left R-module M satisfies condition (∗) if and only if M is

co-semisimple.

Proof. (⇐) Clear by Proposition 2.3.

(⇒) Suppose that M satisfies (∗). Suppose that Rad(M) is non-zero. Let m be any

non-zero element of Rad(M). Let K be any maximal submodule of Rm and let P
denote the annihilator in R of M/K. By hypothesis, R/P is simple Artinian and

hence M/PM is a semisimple R-module. In particular, Rad(M) is contained in

PM and hence m belongs to PM . Next K is an intersection of prime submodules

Pi where i belongs to some index set I. For each i in I, Pm is contained in Pi and

hence PM is contained in Pi or m belongs to Pi. In any case, m belongs to Pi.

Thus the element m belongs to every prime submodule Pi so that m belongs to

K, a contradiction. Thus Rad(M) = (0). By Proposition 2.3, every homomorphic

image of M also satisfies (∗). Thus every homomorphic image of M has zero radical.

Therefore M is co-semisimple. ¤

Let R be a ring. If RR is a co-semisimple module, then the ring R is called

left co-semisimple or a left V-ring. If R is a left V-ring, then J2 = J for every

left ideal J ⊆ R and the center Z(R) is a (von Neumann) regular ring, and a

commutative ring is a (left) V-ring if and only if it is regular (see [42, 23.5]).

Moreover, Armendariz and Fisher show in [3, Theorem 1] that a PI-ring R is a
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(left) V-ring if and only if I2 = I for each two-sided ideal I of R. In the next

theorem we show that if R is left V-ring, then every R-module satisfies the (∗)
condition and the converse is also true for PI-rings.

Theorem 2.10. Consider the following statements for a ring R.

(1) R is a left V-ring.

(2) Every left R-module satisfies the (∗) condition.

(3) The left R-module R satisfies the (∗) condition.

(4) Every proper ideal of R is semiprime.

Then (1) ⇒ (2) ⇒ (3) ⇒ (4). Moreover, if R/P is Artinian for every left primitive

ideal P, then (3) ⇒ (1). Also if R is a PI-ring, then (4) ⇒ (1).

Proof. (1) ⇒(2) Let R be a left V-ring. Then by [42, 23.5], every R-module is

co-semisimple. Thus by Corollary 2.4, every R-module satisfies the (∗) condition.

(2) ⇒ (3) is clear.

(3) ⇒ (4) Let RR satisfy the (∗) condition. Then by Proposition 2.3, every proper

left ideal of R is semiprime and hence, every proper ideal of R is a semiprime ideal.

Now suppose that R/P is Artinian for every left primitive ideal P. Suppose that

(3) holds. Then by Theorem 2.9, the left R-module R is co-semisimple.

Finally, we assume that R is a PI-ring. Suppose that (4) holds. Thus for each

two-sided ideal I of R, I2 is a semiprime ideal and so I2 = I. Therefore R is a left

V-ring by Armendariz-Fisher [3, Theorem 1]. ¤

Proposition 2.11. Let R be a PI-ring. If every R-module M satisfies the (∗)
condition, then for every prime ideal P of R the ring R/P is simple Artinian.

Proof. Assume that R is a PI-ring and every R-module M satisfies the (∗) condi-

tion. Then by Proposition 2.3, every nonzero R-module has a semiprime submod-

ule. Now by [6, Theorem 5.6], for every prime ideal P of R the ring R/P is simple

Artinian. ¤

One can easily see that for any left R-module M , if Hom(M, R/rad(R)) 6= 0,

where rad(R) denote the nil radical of R, then M contains a prime submodule (see

also [33, Corollary 1.3]). It is also easy to show that whenever M is a left R-module

and P is a maximal ideal of R with M 6= PM , then each proper submodule of M

containing PM is a prime submodule. Thus, we can naturally provide nontrivial

rings over which every module has a prime submodule, simply take a maximal ideal

P in any ring R, then the rings R/Pn, n = 1, 2, 3, ..., give us some natural exam-

ples. We recall that a ring R is called a P-ring if every nonzero R-module has a
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prime submodule. In [6, Theorem 5.6], it is shown that if R is a PI-ring, then R is

a P-ring if and only if R is a Max-ring i.e., every nonzero R-module has a maximal

submodule. Commutative Max-rings were first characterized in [19] as rings R such

R/J(R) is regular and J(R) is T -nilpotent, where J(R) is the Jacobson radical of

R (see also [14, 17, 40]). Thus by Proposition 2.11, we have the following result.

Proposition 2.12. Let R be a ring. Then:

(a) If every R-module M satisfies the (∗) condition, then R is a P-ring.

(b) If R is a PI-ring and every R-module M satisfies the (∗) condition, then R is

a Max-ring.

Proof. (a) Assume that every R-module satisfies the (∗) condition. Then by

Proposition 2.3, every nonzero R-module has a prime submodule i.e., R is a P-

ring. (b) follows from (a) and [6, Theorem 5.6]. ¤

Corollary 2.13. Let R be a semiprime commutative ring. Then the following

statements are equivalents:

(1) Every R-module satisfies the (∗) condition.

(2) R is a Max-ring.

(3) dim(R) = 0.

Proof. (1) ⇒ (2) is by Proposition 2.12 (ii).

(2) ⇔ (3) is by [31, Remark 4.37].

(2) ⇔ (1) Assume that R is a Max-ring. Then by [19], R/J(R) is a regular ring

and J(R) is T-nilpotent, where J(R) is the Jacobson radical of R. Since R is

semiprime, J(R) = 0 and so R is a regular ring. Now by Theorem 2.10, every

R-module satisfies the (∗) condition. ¤

In the literature, there are two different generalizations of the classical Krull di-

mension for modules via prime submodules. In fact, the notion of prime dimension

of a module M over a commutative ring R [denoted by D(M) or dim(M)], was in-

troduced by Marcelo and Masqué [27], as the maximum length of the chains of prime

submodules of M (see also [25]; for some known results about the prime dimen-

sion of modules). Also, the classical Krull dimension of rings has been extended to

modules RM by Behboodi [6], as the maximum length of the strong chains of prime

submodules of M (allowing infinite ordinal values) and denoted by Cl.K.dim(M).

(Note: the chain N1 ⊂s N2 ⊂s N3 ⊂s · · · of submodules of M is called a strong
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ascending chain if for each i ∈ N, Ni $ Ni+1 and also (Ni : M) $ (Ni+1 : M); see

also [12]; for definition of a strong descending chain).

Let R be a ring and M be a left R-module. We recall the definition of the prime

dimension of M . Let every prime submodule of M is contained in a maximal prime

submodule. We define, by transfinite induction, sets Xα of prime submodules of

M . To start with, let X−1 be the empty set. Next, consider an ordinal α ≥ 0;

if Xβ has been defined for all ordinals β < α, let Xα be the set of those prime

submodules P in M such that all prime submodules proper containing P belong

to
⋃

β<α Xβ . (In particular, X0 is the set of maximal prime submodules of M .)

If some Xγ contains all prime submodules of M , we say that dim(M) exists, and

we set dim(M)-the prime dimension of M -equal to the smallest such γ. We write

“dim(M) = γ” as an abbreviation for the statement that dim(M) exists and equal

γ. In fact, if dim(M) = γ < ∞, then

dim(M) = sup{ht(P ) | P is a prime submodule of M},

where ht(P ) is the greatest non-negative integer n such that there exists a chain of

prime submodules of M

P0 ⊂ P1 ⊂ · · · ⊂ Pn = P,

and ht(P ) = ∞ if no such n exists.

Let X be a topological space and let x and y be points in X. We say that x and y

can be separated if each lies in an open set which does not contain the other point.

X is a T1- space if any two distinct points in X can be separated. A topological

space X is a T1-space if and only if all points of X are closed in X (i.e., given any

x in X, the singleton set {x} is a closed set.

Theorem 2.14. Let M be a left R-module. Then Spec(RM) is a T1-space if and

only if dim(M) ≤ 0.

Proof. (⇒) Assume that Spec(RM) is a T1-space. If Spec(RM) = ∅, then dim(M)

= −1. Let Spec(RM) 6= ∅ and P1 ∈ Spec(RM). Then {P1} is a closed set in

Spec(RM). We claim that every prime submodule of M is a maximal prime sub-

module, for if not, we assume that P1 $ P2, where P1, P2 are prime submodules of

M . Since {P1} is a closed set, {P1} =
⋂

i∈I(
⋃ni

j=1 V (Ni,j)), where Ni,j ≤ M and I

is an index set. Thus we conclude that P1 ∈
⋃ni

j=1 V (Ni,j), for all i ∈ I, and hence,

there exists 1 ≤ ji ≤ ni such that P1 ∈ V (Ni,ji). Since P1 $ P2, P2 ∈ V (Ni,ji)

for all i ∈ I. It follows that P2 ∈
⋃ni

j=1 V (Ni,j), for all i ∈ I. Thus P2 ∈ {P1}, a

contradiction. Thus every prime submodule of M is a maximal prime submodule.
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(⇐) Suppose that dim(M) ≤ 0. If dim(M) = −1, then Spec(RM) = ∅ i.e.,

Spec(RM) is trivial space and so it is a T1-space. Now let dim(M) = 0, i.e.,

Spec(RM) 6= ∅ and every prime submodule of M is a maximal prime submodule.

Thus for each prime submodule P of M , V (P ) = {P}, and so {P} is a closed set

in Spec(RM) i.e., Spec(RM) is a T1-space. ¤

Let M be a finitely generated (or co-semisimple) module. Since every prime

submodule of M is contained in a maximal submodule, by Theorem 2.14, Spec(RM)

is a T1-space if and only if Spec(RM) = Max(M). Moreover, we have the following

interesting result.

Proposition 2.15. For every finitely generated R-module M , the following state-

ments are equivalent:

(1) M is a co-semisimple module with dim(M) = 0.

(2) Spec(RM) is a T1-space and M satisfies the (∗) condition.

Proof. (1) ⇒ (2) Since M is co-semisimple, by Corollary 2.4, M satisfies the (∗)
condition and since Spec(RM) = Max(M), by Theorem 2.14, Spec(RM) is a T1-

space.

(2) ⇒ (1) Since M is finitely generated, every maximal prime submodule of M is

a maximal submodule. Thus by Theorem 2.14, Spec(RM) = Max(M) and so by

Proposition 2.3, every submodule of M is an intersection maximal submodule i.e.,

M is a co-semisimple module. ¤

Remark 2.16. The assumption finitely generated is necessary (even if R is com-

mutative) in the corollary above. For example if R = Z and M = Q, then the

zero submodule of M is the only prime submodule. Thus XM is a T1-space and M

satisfies the (∗) condition, but M is not a co-semisimple Z-module.

Theorem 2.17. Let M be a finitely generated module over a commutative ring R.

Then the following statements are equivalent:

(1) Spec(RM) is a T1-space.

(2) M is a multiplication module with dim(M) = 0.

Proof. (1) ⇒ (2) Let Spec(RM) is a T1-space. Since M is finitely generated, by

Theorem 2.14, dim(M) = 0. Thus by [44, Corollary 4.15], M is a multiplication

module.

(2) ⇒ (1) is by Theorem 2.14. ¤
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Corollary 2.18. Let M be a Noetherian module over a commutative ring R. Then

the following statements are equivalent:

(1) Spec(RM) is a T1-space.

(2) M is a multiplication module with dim(M) = 0.

(3) M is a cyclic Artinian module.

Proof. (1) ⇔ (2) is by Theorem 2.17.

(2) ⇒ (3) Let M is a multiplication module with dim(M) = 0. Then by [6, Theorem

4.9], M is Artinian. Thus by [16, Corollary 2.9], M is a cyclic Artinian module.

(3) ⇒ (1) Since every cyclic module is multiplication, by Theorem 2.17 is clear. ¤

Proposition 2.19. Let R be a PI-ring (or an FBN-ring), and let M be a left R-

module. If either R is an Artinian ring or M is an Artinian module, then Spec(RM)

is a T1-space if and only if either Spec(RM) = ∅ or Spec(RM) = Max(M).

Proof. By Lemma 2.8 and Theorem 2.14. ¤

Proposition 2.20. Let M be a semisimple R-module. If Spec(RM) is a T1-space,

then M is a direct sum of non-isomorphic simple modules.

Proof. Let Spec(RM) is a T1-space i.e., every prime submodule of M is maximal

prime. Assume that Rm1 and Rm2 are two simple submodule of M such that

Rm1
∼= Rm2. Thus M = Rm1 ⊕ Rm2 ⊕ K, for some K ≤ M . Clearly, K and

Rm2⊕K are prime submodules of M and so K is not a maximal prime submodule,

a contradiction. ¤

Next, we show that the converse of Proposition 2.20 is true for modules over a

PI-ring (or an FBN-ring).

Theorem 2.21. Let M be a semisimple module over a PI-ring (or an FBN-ring)

R. Then the following statements are equivalents:

(1) Spec(RM) is a T1-space;

(2) M is a direct sum of non-isomorphism simple modules.

Proof. (1) ⇒ (2) is by Proposition 2.20.

(2) ⇒ (1) Let P ∈ Spec(RM) with P = (P : M). Thus M := M/P is a prime

R := R/P-module. Since M is semisimple, M is also a semisimple R-module. Thus,

M is a prime R-module with soc(M) 6= 0, and hence, by [6, Lemma 1.5], M is a

homogenous semisimple R-module. It follows that M is a homogenous semisimple

R-module. Since M = M/P is isomorphic with a submodule of M , and every
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submodule M is a direct sum of non-isomorphic simple module, M/P is a simple

R-module, i.e. P is a maximal R-submodule of M . Thus dim(M) = 0 and so by

Theorem 2.14, Spec(RM) is a T1-space. ¤

The cofinite topology (sometimes called the finite complement topology) is a

topology which can be defined on every set X. It has precisely the empty set and

all cofinite subsets of X as open sets. As a consequence, in the cofinite topology,

the only closed subsets are finite sets, or the whole of X. Then X is automatically

compact in this topology, since every open set only omits finitely many points of X.

Also, the cofinite topology is the smallest topology satisfying the T1 axiom; i.e., it

is the smallest topology for which every singleton set is closed. In fact, an arbitrary

topology on X satisfies the T1 axiom if and only if it contains the cofinite topology.

If X is not finite, then this topology is not Hausdorff, regular or normal, since no

two open sets in this topology are disjoint. One place where this concept occurs

naturally is in the context of the Zariski topology. Since polynomials over a field

K are zero on finite sets, or the whole of K, the Zariski topology on K (considered

as affine line) is the cofinite topology.

Next, we give a characterization for a module M for which Spec(RM) is the

cofinite topology.

Theorem 2.22. Let M be a left R-module. Then the following statements are

equivalent:

(1) Spec(RM) is the cofinite topology.

(2) dim(M) ≤ 0 and for every submodule N of M either V (N) = Spec(RM) or

V (N) is finite.

Proof. (1) ⇒ (2) Suppose that Spec(RM) is the cofinite topology. Since every

cofinite topology satisfies the T1 axiom, by Theorem 2.14, dim(M) ≤ 0. Suppose

that there exists a submodule N of M such that contained in infinite number of

prime submodules of M and V (N) 6= Spec(RM). Then W (N) is an open set in

Spec(RM) with infinite complement, a contradiction.

(2) ⇒ (1) Suppose dim(M) ≤ 0 and for every submodules N of M , V (N) =

Spec(RM) or V (N) is finite. Thus every finite union
⋃n

i=1 V (Ni) of submodules

Ni ≤ M is also finite or Spec(RM). It follows that any intersection of finite union⋂
j∈J (

⋃n
i=1 V (Nji)) of submodules Nji ≤ M is finite or Spec(RM). Therefore,

every closed set in Spec(RM) is either finite or Spec(RM) i.e., Spec(RM) is the

cofinite topology. ¤
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Let M be a left R-module. Clearly if dim(M) = −1, then Spec(RM) is trivial

space and so it is cofinite. The following example shows that in general (even over

a commutative ring), dim(M) = 0 6⇒ Spec(RM) is cofinite.

Example 2.23. Let R = Z and

M =
∑

pi∈P

Zpi = Z2 ⊕ Z3 ⊕ Z5 ⊕ · · · ⊕ Zpi ⊕ · · ·

where P is the set of all non-negative prime numbers. Then by [6, Proposition

1.4], every prime Z-submodule of M is virtually maximal. Thus for each prime

submodule P of M , M/P is a homogeneous semisimple. Since M is a direct sum of

non-isomorphic simple modules, M/P is simple i.e., P is a maximal submodule of

M . Thus dim(M) = 0. Now we show that Spec(RM) is not the cofinite topology.

Clearly for each prime number pj , Pj :=
∑

pj 6=pi∈P Zpi
is a maximal submodule of

M and so Spec(RM) is infinite. Let N = Z2 ⊕ 0⊕ 0⊕ · · · ≤ M . One can easily see

that V (N) = Spec(RM) \ {P1}. Thus V (N) is infinite and V (N) 6= Spec(RM) and

hence by Theorem 2.22, Spec(RM) is not the cofinite topology. Also, it is easy to

check that Spec(RM) is not quasi-compact.

Corollary 2.24. Let M be a finitely generated module over a commutative ring R.

If Spec(RM) is the cofinite topology, then M is a multiplication module.

Proof. Assume that Spec(RM) is the cofinite topology. By Theorem 2.22, dim(M)

= 0, since M is finitely generated. Thus by [44, Corollary 4.15], M is a multiplica-

tion module. ¤

Next, we show that over a commutative ring R, Noetherian modules whose

classical Zariski topology is the cofinite topology are precisely the Artinian cyclic

modules.

Corollary 2.25. Let M be a module over a commutative ring R. Then M is

Noetherian and Spec(RM) is the cofinite topology if and only if M is an Artinian

cyclic module.

Proof. (⇒) Assume that M is Noetherian and Spec(RM) is the cofinite topology.

By Theorem 2.22 and Corollary 2.24, M is a multiplication module with dim(M) =

0. Then by [6, Theorem 4.9], M is an Artinian multiplication module. Now by [16,

Corollary 2.9], M is cyclic.

(⇐) Let M is an Artinian cyclic module. Clearly, M is Noetherian, every prime

submodule of M is a maximal submodule and Spec(RM) is finite and therefore

Theorem 2.21 completes the proof. ¤
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Suppose that X is a topological space. Let x and y be points in X. We say that

x and y can be separated by neighborhoods if there exists a neighborhood U of x

and a neighborhood V of y such that U and V are disjoint (U
⋂

V = ∅). X is a

Hausdorff space if any two distinct points of X can be separated by neighborhoods.

This is why Hausdorff spaces are also called T2-spaces or separated spaces.

Let M be a left R-module with |Spec(RM)| ≤ 1. Then Spec(RM) is the trivial

space and so it is a Hausdorff space. The following proposition gives some properties

of modules M with |Spec(RM)| ≥ 2 for which Spec(RM) is a Hausdorff space.

Proposition 2.26. Let M be a left R-module with |Spec(RM)| ≥ 2. If Spec(RM)

is a Hausdorff space, then dim(M) = 0 and there exist submodules N1, N2, ..., Nn

of M such that V (Ni) 6= Spec(RM), for all i, and

V (N1) ∪ V (N2) ∪ .... ∪ V (Nn) = Spec(RM).

Proof. Assume that Spec(RM) is a Hausdorff space and P1, P2 ∈ Spec(RM) such

that P1 6= P2. Then there exist open sets

⋃
i∈I(

⋂ni

j=1 W (Nij)),
⋃

k∈K(
⋂mk

l=1 W (N ′
kl)) ∈ T (M), Nij , Nkl ≤ M

such that

P1 ∈
⋃

i∈I(
⋂ni

j=1 W (Nij)), and P2 ∈
⋃

k∈K(
⋂mk

l=1 W (N ′
kl))

and

[
⋃

i∈I(
⋂ni

j=1 W (Nij)) ]
⋂

[
⋃

k∈K(
⋂mk

l=1 W (N ′
kl)) ] = ∅.

Thus there exist s ∈ I, t ∈ K such that

P1 ∈ (
⋂ns

j=1 W (Nsj)) and P2 ∈ (
⋂mt

l=1 W (N ′
tl)),

and also

(
⋂ns

j=1 W (Nsj))
⋂

(
⋂mt

l=1 W (N ′
tl)) = ∅.

It follows that P1 6⊆ P2 and P2 6⊆ P1. Thus dim(M) = 0 and also

(
⋃ns

j=1 V (Nsj))
⋃

(
⋃mt

l=1 V (N ′
tl)) = Spec(RM).

¤

It is well-known that if X is a finite space, then X is a T1-space if and only if X

is the discrete space. Thus we have the following corollary.
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Corollary 2.27. Let M be an R-module such that Spec(RM) is finite. Then the

following statements are equivalent:

(1) Spec(RM) is a Hausdorff space.

(2) Spec(RM) is a T1-space.

(3) Spec(RM) is the cofinite topology.

(4) Spec(RM) is discrete .

(5) dim(M) ≤ 0.

Minimal prime submodules are defined in a natural way. By Zorn’s Lemma one

can easily see that each prime submodule of a module M contains a minimal prime

submodule of M. In [39], it is shown that Noetherian modules contain only finitely

many minimal prime submodules.

Corollary 2.28. Let M be a nonzero Noetherian left R-module. Then the following

statements are equivalent:

(1) Spec(RM) is a Hausdorff space.

(2) Spec(RM) is a T1-space.

(3) Spec(RM) is the cofinite topology.

(4) Spec(RM) is discrete .

(5) Spec(RM) = Max(M).

Proof. (1) ⇒ (2) is clear.

(2) ⇒ (3) Assume that Spec(RM) is a T1-space. By Theorem 2.14, dim(M) ≤ 0.

Since M is Noetherian, by [33, Theorem 4.2], Spec(RM) is finite. Thus Spec(RM)

is a cofinite topology.

(3) ⇒ (4) Assume that Spec(RM) is the cofinite topology. Then by Theorem 2.22,

dim(M) ≤ 0 and so by [33, Theorem 4.2], Spec(RM) is finite. Now by corollary

above Spec(RM) is discrete .

(4) ⇒ (5) Let Spec(RM) be a discrete space. Since Spec(RM) is a T1-space, by

Theorem 2.22, dim(M) = 0. Since M is Noetherian, every prime submodule of M

is maximal i.e., Spec(RM) = Max(M).

(5) ⇒ (1) Since M is Noetherian, M contains only a finite number of minimal prime

submodules. Therefore Spec(RM) = Max(M) implies that Spec(RM) is finite and

dim(M) ≤ 0. Now by Corollary 2.27, Spec(RM) is a Hausdorff space. ¤

Clearly any Noetherian module satisfies ascending chain condition (ACC) on

semiprime submodules (so on intersection of prime submodules). We shall show

that any Artinian module M over a PI-ring (or an FBN-ring) R satisfies ACC on
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intersection of prime submodules. Note that any intersection of prime submodules

of a module M is a semiprime submodule of M . In general, the converse; even,

over a commutative Noetherian ring R with dim(R) = 1, is false (see for example

[21, Corollary 12] and [8, Lemma 3.8 and Theorem 3.9]).

We recall that for a left R-module M the prime radical radR(M) is defined to

be the intersection of all prime submodules of M , and in case M has no prime

submodule, then radR(M) is defined to be M .

Proposition 2.29. Let R be a ring such that R/P is Artinian for every left prim-

itive ideal P. Let M be an Artinian R-module. Then radR(M) = M or radR(M)

is a finite intersection of prime submodules and M/radR(M) is Noetherian. Con-

sequently, M satisfies ACC on intersections of prime submodules.

Proof. This follows directly from [35, Theorem 1.5] and its proof. ¤

The following is now immediate.

Corollary 2.30. Let M be an Artinian module over a PI-ring (or an FBN-ring)

R. Then radR(M) = M or radR(M) is a finite intersection of prime submodules

and M/radR(M) is Noetherian. Consequently, M satisfies ACC on intersections

of prime submodules.

Theorem 2.31. Let M be an Artinian module over a PI-ring (or an FBN-ring)

R. Then the following statements are equivalent:

(1) Spec(RM) is a Hausdorff space.

(2) Spec(RM) is a T1-space.

(3) Spec(RM) is the cofinite topology.

(4) Spec(RM) is discrete .

(5) Either Spec(RM) = ∅ or Spec(RM) = Max(M).

Proof. (1) ⇒ (2) is clear.

(2) ⇒ (3) Let Spec(RM) be a T1-space. By Proposition 2.22, either Spec(RM) =

∅ or Spec(RM) = Max(M). Let Spec(RM) 6= ∅. Then by Corollary 2.30,

M/radR(M) is Noetherian and dim(M/radR(M)) = 0. Now by [33, Theorem

4.2], XM/radR(M) is finite. Clearly, the map P −→ P + radR(M) is a bijective map

from Spec(RM) to XM/radR(M). Thus Spec(RM) is finite and so by Corollary 2.27,

Spec(RM) is the cofinite topology.

(3) ⇒ (4) Assume that Spec(RM) is the cofinite topology. Then by Theorem 2.22,
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dim(M) ≤ 0. It follows that Spec(RM) is finite (the proof is similar to the proof

of (2) ⇒ (3)). Now by Corollary 2.27, Spec(RM) is discrete .

(4) ⇒ (5) is by Proposition 2.22.

(5) ⇒ (1) Clearly, Spec(RM) = ∅ or Spec(RM) = Max(M) implies that XM/radR(M)

= ∅ or XM/radR(M) = Max(M/radR(M). On the other hand if Spec(RM) 6= ∅,
then by Corollary 2.30, M/radR(M) is Noetherian and so XM/radR(M) is finite.

Thus Spec(RM) is also finite. Now by Corollary 2.27, Spec(RM) is a Hausdorff

space. ¤

Clearly for every simple module M , Spec(RM) = {(0)} and so Spec(RM) is the

discrete space. Also, if R is an integral domain and Q is the filed of fraction of R,

then the zero submodule of Q is the only prime submodule of Q. Thus Spec(RQ) is

the discrete space. We are going to show if R is a commutative Noetherian integral

domain with dim(R) ≤ 1, then simple modules and the filed of fraction of R are

the only prime modules for which the classical Zariski topology is a T1-space (i.e.,

a discrete space).

Lemma 2.32. Let M be a prime module. Then Spec(RM) is a T1-space if and

only if the zero submodule is the only prime submodule of M .

Proof. It is evident by Theorem 2.14. ¤

Proposition 2.33. Let R be a commutative Noetherian integral domain with dim(R) ≤
1, and let M be a prime module. Then the following are equivalent:

(1) Spec(RM) is a T1-space.

(2) Spec(RM) is the discrete space.

(3) M is a simple module or M ' Q, where Q is the filed of fraction of R.

Proof. By Lemma 2.32 and [9, Theorem 3.6]. ¤

We conclude this section with the following result for free modules.

Proposition 2.34. Let R be a ring and M be a free R-module. Then Spec(RM)

is a T1-space if and only if M ∼= R and dim(R) = 0.

Proof. Assume that M =
⊕

λ∈Λ R and Spec(RM) is a T1-space. Then by Theorem

2.14, dim(M) ≤ 0. We claim that |Λ| = 1, for if not, we can write M = R⊕R⊕X

for some submodule X of M . Now, for each prime ideal P of R, it is easy to see

that P ⊕ P ⊕ X $ P ⊕ R ⊕ X are two prime submodules of M , a contradiction.

Thus M ∼= R and dim(R) = 0. The converse is clear. ¤
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3. Modules whose classical Zariski topologies are spectral spaces

Let M be a left R-module and let Spec(RM) be endowed with the classical

Zariski topology. For each subset Y of Spec(RM), We will denote the closure of Y

in Spec(RM) by Y , and intersections of elements of Y by =(Y ) (note that if Y = ∅,
then =(Y ) = M).

A topological space X is called irreducible if X 6= ∅ and every finite intersection

of non-empty open sets of X is non-empty. A (non-empty) subset Y of a topology

space X is called an irreducible set if the subspace Y of X is irreducible. For this

to be so, it is necessary and sufficient that, for every pair of sets Y1, Y2 which are

closed in X and satisfy satisfy Y ⊆ Y1 ∪ Y2, Y ⊆ Y1 or Y ⊆ Y2 (see, for example

[13, page 94]).

We know that, for any commutative ring R, Spec(R) is always a T0-space for the

usual Zariski topology. This is not true for Spec(RM) with the topology considered

by Lu in [22] (see [22, page 429]).

Let Y be a closed subset of a topological space. An element y ∈ Y is called a

generic point of Y if Y = {y}. Note that a generic point of the irreducible closed

subset Y of a topological space is unique if the topological space is a T0-space.

Following Hochster [20], we say that a topological space X is a spectral space

in case X is homeomorphic to Spec(S), with the Zariski topology, for some com-

mutative ring S. Spectral spaces have been characterized by Hochster [20, p.52,

Proposition 4] as the topological spaces X which satisfy the following conditions:

(i) X is a T0-space;

(ii) X is quasi-compact;

(iii) the quasi-compact open subsets of X are closed under finite intersection and

form an open basis;

(iv) each irreducible closed subset of X has a generic point.

For any commutative ring R, Spec(R) is well-known to satisfy these conditions

(see [13, Chap II, 401-4.3]). However, for a module M over a commutative ring R,

Spec(RM) with the topology considered in [22] is not necessarily a spectral space

in general. In fact in [22, Theorem 6.5], it is shown that for a module M over a

commutative ring R, Spec(RM) with the topology considered in [22] is a spectral

space if and only if Spec(RM) is a T0-space, if and only if |SpecP(M)| ≤ 1 for every

P ∈ Spec(R), where SpecP(M) = {P ∈ Spec(RM)|(P : M) = P}. This yields that

if M is also finitely generated, then Spec(RM) is a spectral space if and only if M

is a multiplication module (see [22, Corollary 6.6]).
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In this section, we will show that for any R-module M , Spec(RM) with the

classical Zariski topology is a T0-space, and each finite irreducible closed subset of

Spec(RM) has a generic point. Then we observe Spec(RM) from the point of view

of spectral topological spaces.

Proposition 3.1. Let M be a left R-module, and let Y be a nonempty subset of

Spec(RM). Then

Y =
⋃

P∈Y

V (P ).

Proof. Clearly, Y ⊆ ⋃
P∈Y V (P ). Suppose A is any closed subset of X such that

Y ⊆ A. Thus A =
⋂

i∈I(
⋃ni

j=1 V (Nij)), for some Nij ≤ M , i ∈ I and ni ∈ N. Let

Q ∈ ⋃
P∈Y V (P ). Then there exists P0 ∈ Y such that Q ∈ V (P0) and so P0 ⊆ Q.

Since P0 ∈ A, for each i ∈ I there exists j ∈ {1, 2, · · · , ni} such that Nij ⊆ P0, and

hence Nij ⊆ P0 ⊆ Q. It follows that Q ∈ A. Therefore
⋃

P∈Y V (P ) ⊆ A. ¤

Now the above proposition immediately yields the following interesting result.

Corollary 3.2. Let M be a left R-module. Then

(a) {P} = V (P ), for all P ∈ Spec(RM).

(b) Q ∈ {P} if and only if P ⊆ Q if and only if V (Q) ⊆ V (P ).

(c) The set {P} is closed in Spec(RM) if and only if P is a maximal prime sub-

module of M .

In [13, Proposition 14], it is shown that if R is a commutative ring, then a subset

Y of X = Spec(R) is irreducible if and only if =(Y ) is a prime ideal of R. In the

next theorem we show that if Y ⊆ Spec(RM) and Y is irreducible, then =(Y ) is a

prime submodule.

Lemma 3.3. Let M be a left R-module. Then for each P ∈ Spec(RM), V (P ) is

irreducible.

Proof. Let V (P ) ⊆ Y1

⋃
Y2, where Y1 and Y2 are closed sets. Since P ∈ V (P ),

either P ∈ Y1 or P ∈ Y2. Without loss of generality we can assume that P ∈ Y1.

We have Y1 =
⋂

i∈I(
⋃ni

j=1 V (Nij)), for some I, ni (i ∈ I), and Nij ≤ M . Thus

P ∈ ⋃ni

j=1 V (Nij), for all i ∈ I.

It follows that

V (P ) ⊆ ⋃ni

j=1 V (Nij), for all i ∈ I.

Therefore, V (P ) ⊆ Y1. Thus V (P ) is irreducible. ¤
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Theorem 3.4. Let M be a left R-module and Y ⊆ Spec(RM).

(i) If Y is irreducible, then =(Y ) is a prime submodule.

(ii) If =(Y ) is a prime submodule and =(Y ) ∈ Y , then Y is irreducible.

Proof. (⇒) Suppose that Y is an irreducible subset of Spec(RM). Clearly, =(Y ) =⋂
P∈Y P � M and Y ⊆ V (=(Y )). Let IK ⊆ =(Y ). One can easily check that

Y ⊆ V (IK) ⊆ V (K) ∪ V (IM). Since Y is irreducible, either Y ⊆ V (K) or

Y ⊆ V (IM). If Y ⊆ V (K), then K ⊆ P , for all P ∈ Y , i.e., K ⊆ =(Y ). If

Y ⊆ V (IM), then IM ⊆ P , for all P ∈ Y , i.e., IM ⊆ =(Y ). Thus by Proposition

2.1, =(Y ) is a prime submodule of M .

(⇐) Suppose that P := =(Y ) is a prime submodule of M and P ∈ Y . It is

easy to check that Y = V (P ). Now let Y ⊆ Y1 ∪ Y2, where Y1, Y2 are closes

sets. Thus Y ⊆ Y1 ∪ Y2. Since V (P ) ⊆ Y1 ∪ Y2 and by Lemma 3.3, V (P ) is

irreducible, V (P ) ⊆ Y1 or V (P ) ⊆ Y2. It follows that either Y ⊆ Y1 or Y ⊆ Y2

(since Y ⊆ V (P )). Thus Y is irreducible. ¤

The following example shows that the assumption that =(Y ) ∈ Y is necessary

in Theorem 3.4 (ii).

Example 3.5. Let R = Z, M = Z2⊕Z2⊕Z3 and Y = {0⊕Z2⊕Z3,Z2⊕ 0⊕Z3}.
It is clear that =(Y ) = 0⊕ 0⊕Z3 is a prime submodule of M and Y = V (0⊕Z2⊕
Z3) ∪ V (Z2 ⊕ 0⊕ Z3) = {0⊕ Z2 ⊕ Z3} ∪ {Z2 ⊕ 0⊕ Z3}. Thus Y is not irreducible.

Let R be a ring and M be a left R-module. For a submodule N of M , if there

is a prime submodule containing N , then we define
√

N =
⋂{P : P is a prime submodule of M and N ⊆ P}.

If there is no prime submodule containing N , then we put
√

N = M . In particular,

for any module M , we have radR(M) =
√

(0).

By [13, Proposition 14], for each ideal I of a commutative ring R, V (I) is an

irreducible subset of Spec(R) (with the usual topology Zariski) if and only if
√

I is

a prime ideal. In the following corollary we extend this fact to modules over any

ring.

Corollary 3.6. Let M be a left R-module and N ≤ M . Then the subset V (N) of

Spec(RM) is irreducible if and only if
√

N is a prime submodule. Consequently,

Spec(RM) is irreducible if and only if radR(M) is a prime submodule

Proof. (⇒) is by Theorem 3.4 (i).

(⇐) Clearly for each submodule N of M , V (N) = V (
√

N). Now let
√

N is a prime
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submodule of M . Then
√

N ∈ V (N), and hence by Theorem 3.4 (ii), V (N) is

irreducible. ¤

In the next theorem we characterize left Artinian modules M over a PI-ring (or

an FBN-ring), modules M over a left Artinian PI-ring (or an FBN-ring) and left

semisimple modules M over a PI-ring (or an FBN-ring) for which Spec(RM) is

irreducible.

Theorem 3.7. Let R be a PI-ring (or an FBN-ring), and let M be a nonzero left

R-module. Then:

(a) If R is an Artinian ring or M is left Artinian, then the following statements

are equivalent:

(1) Spec(RM) is irreducible.

(2) M/radR(M) is a nonzero homogeneous semisimple module.

(3) Spec(RM) 6= ∅ and for each proper submodule N of M , either V (N) = ∅
or V (N) is irreducible.

(b) If M is left semisimple, then the following statements are equivalent:

(1) Spec(RM) is irreducible.

(2) M/radR(M) is a homogeneous semisimple module.

(3) For each proper submodule N of M , V (N) is irreducible.

Proof. Part (a): (1) ⇒ (2) Assume that Spec(RM) is irreducible. Then Spec(RM)

6= ∅ and by Corollary 3.6, radR(M) is a prime submodule. If M is a left Artinian

module, then by [6, Corollary 1.6], radR(M) is a virtually maximal submodule of

M , i.e., M/radR(M) is a homogeneous semisimple module. If R is an Artinian

ring, then by the proof of Lemma 2.8, M/radR(M) is a homogeneous semisimple

module. Now since Spec(RM) 6= ∅, radR(M) is a proper submodule of M and so

M/radR(M) is nonzero.

(2) ⇒ (3) Let N be a proper submodule of M . Clearly radR(M) ⊆ √
N , and

hence either
√

N = M or
√

N/radR(M) is a proper submodule of M/radR(M). If√
N = M , then V (N) = ∅. Thus we assume that

√
N 6= M . Since M/radR(M)

is a homogeneous semisimple module,
√

N/radR(M) is a prime submodule of

M/radR(M) i.e.,
√

N is a prime submodule of M . Now by Corollary 3.6, V (N) is

irreducible.

(3) ⇒ (1) is clear (since V (0) = Spec(RM)).

Part (b): Let M is left semisimple. Since every proper submodule of M is

contained in a maximal submodule, V (N) 6= ∅, for every proper submodule N . On
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the other hand by [6, Corollary 1.6], every prime submodule of M is a virtually

maximal submodule of M . Now the proof is similar to the proof of Part (a). ¤

We remark that any closed subset of a spectral space is spectral for the induced

topology, and we note that a generic point of the irreducible closed subset Y of

a topological space is unique if the topological space is a T0-space. The following

proposition shows that for any R-module M , Spec(RM) is always a T0-space and

every finite irreducible closed subset of Spec(RM) has a generic point.

Proposition 3.8. Let M be a left R-module. Then

(i) Spec(RM) is always a T0-space.

(ii) Every P ∈ Spec(RM) is a generic point of the irreducible closed subset V (P ).

(iii) Every finite irreducible closed subset of Spec(RM) has a generic point.

Proof. (i) Let P1, P2 ∈ Spec(RM). Then by Corollary 3.2 (a), {P1} = {P2} if and

only if P1 = P2. Now by the fact that a topological space is a T0-space if and only

if the closures of distinct points are distinct, we conclude that for any R-module

M , Spec(RM) is a T0-space.

(ii) is clear by Corollary 3.2 (a).

(iii) Let Y be an irreducible closed subset of Spec(RM) and Y = {P1, P2, · · · , Pk},
where Pi ∈ Spec(RM), k ∈ N. By Proposition 3.1, Y = Y = V (P1)∪ V (P2)∪ ....∪
V (Pk). Since Y is irreducible, Y = V (Pi) for some i (1 ≤ i ≤ k). Now by (ii), Pi

is a generic point of Y . ¤

We have not found any examples of a module M with an irreducible closed subset

Y of Spec(RM) such that Y has not a generic point. The lack of such counterexam-

ples, together with the fact that every finite irreducible closed subset of Spec(RM)

has a generic point, motivates the following conjecture:

Conjecture. For any R-module M , every irreducible closed subset of Spec(RM)

has a generic point.

By Proposition 3.8, for any R-module M , Spec(RM) is a T0-space and every

finite irreducible closed subset of Spec(RM) has a generic point. We note that even

if the conjecture above is true, then Spec(RM) is not necessarily a spectral space in

general; since Spec(RM) is not quasi-compact in general (see Example 2.23), but

in the main theorem of this section, we show that for each left R-module M with

finite spectrum, Spec(RM) is a spectral space.
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Theorem 3.9. Let M be a left R-module with finite spectrum. Then Spec(RM) is

a spectral space. Consequently, for each finite module M , Spec(RM) is a spectral

space.

Proof. Since Spec(RM) is finite, by Proposition 3.8, Spec(RM) is a T0-space and

every irreducible closed subset of Spec(RM) has a generic point. Again, finiteness

of Spec(RM) implies that the quasi-compact open subsets of Spec(RM) are closed

under finite intersection and form an open basis (note: this basis is B = {W (N1)∩
W (N2) ∩ · · · ∩ W (Nk) : Ni ≤ M, 1 ≤ i ≤ k, for some k ∈ N}). Now by the

Hochster’s characterization of a spectral space we conclude that Spec(RM) is a

spectral space. ¤

Remark 3.10. By Theorem 3.9, for any left R-module M with finite spectrum,

there exists a commutative ring S such that the classical Zariski topology of M is

homeomorphic to the usual Zariski topology of the ring S. This is interesting when

M = R, R non-commutative ring, that in this case Spec(RR) is homeomorphic to

Spec(S), for some commutative ring S.

It is clear that for a multiplication module M over a commutative ring R, the

classical Zariski topology T (M) of M and the Zariski topology V∗(M) of M con-

sidered in [22], coincide (see [22, Example 1 (c)]). Following proposition shows that

the converse is also true for all finitely generated modules over commutative rings.

Proposition 3.11. Let R be a commutative ring and M be a finitely generated

R-module. Then the classical Zariski topology of M and the Zariski topology of M

considered in [22], coincide if and only if M is a multiplication module.

Proof. Assume that the classical Zariski topology of M and the Zariski topology

of M considered in [22], coincide. Then by Proposition 3.8, Spec(RM) with the

topology considered in [22] is a T0-space. Now by [22, Corollary 6.6], M is a

multiplication module. The converse is evident. ¤

Let R be a commutative ring and M be a finitely generated R-module. Then

Spec(RM) with the topology considered in [22] is a spectral space if and only if

M is a multiplication module (see [22, Theorem 5.6 and Corollary 6.6]). Thus by

proposition above we have the following interesting result.

Corollary 3.12. Let R be a commutative ring. Then for every finitely generated

multiplication R-module M , Spec(RM) is a spectral space.
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Note: In Part II we shall continue the study of this construction.
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