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Abstract. The purpose of this paper is to give an explicit formula for the

number of non-isomorphic cluster-tilted algebras of type An, by counting the

mutation class of any quiver with underlying graph An. It will also follow that

if T and T ′ are cluster-tilting objects in a cluster category C, then EndC(T ) is

isomorphic to EndC(T ′) if and only if T = τ iT ′.
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1. Cluster-tilted algebras

The cluster category was introduced independently in [7] for type An and in [2]

for the general case. Let Db(mod H) be the bounded derived category of the finitely

generated modules over a finite dimensional hereditary algebra H over a field K. In

[2] the cluster category was defined as the orbit category C = Db(mod H)/τ−1[1],

where τ is the Auslander-Reiten translation and [1] the suspension functor. The

cluster-tilted algebras are the algebras of the form Γ = EndC(T )op, where T is a

cluster-tilting object in C (see [3]).

Let Q be a quiver with no multiple arrows, no loops and no oriented cycles

of length two. Mutation of Q at vertex k is a quiver Q′ obtained from Q in the

following way.

(1) Add a vertex k∗.

(2) If there is a path i → k → j, then if there is an arrow from j to i, remove

this arrow. If there is no arrow from j to i, add an arrow from i to j.

(3) For any vertex i replace all arrows from i to k with arrows from k∗ to i,

and replace all arrows from k to i with arrows from i to k∗.

(4) Remove the vertex k.

We say that a quiver Q is mutation equivalent to Q′, if Q′ can be obtained from

Q by a finite number of mutations. The mutation class of Q is all quivers mutation
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equivalent to Q. It is known from [11] that the mutation class of a Dynkin quiver

Q is finite.

If Γ is a cluster-tilted algebra, then we say that Γ is of type An if it arises from

the cluster category of a path algebra of Dynkin type An.

Let Q be a quiver of a cluster-tilted algebra Γ. From [4], it is known that if Q′

is obtained from Q by a finite number of mutations, then there is a cluster-tilted

algebra Γ′ with quiver Q′. Moreover, Γ is of finite representation type if and only

if Γ′ is of finite representation type [3]. We also have that Γ is of type An if and

only if Γ′ is of type An. From [5] we know that a cluster-tilted algebra is up to

isomorphism uniquely determined by its quiver. See also [8].

It follows from this that to count the number of cluster-tilted algebras of type

An, it is enough to count the mutation class of any quiver with underlying graph

An.

2. Category of diagonals of a regular n + 3 polygon

We recall some results from [7].

Let n be a positive integer and let Pn+3 be a regular polygon with n+3 vertices.

A diagonal is a straight line between two non-adjacent vertices on the border.

A triangulation is a maximal set of diagonals which do not cross. If ∆ is any

triangulation of Pn+3, we know that ∆ consists of exactly n diagonals.

Let α be a diagonal between vertex v1 and vertex v2 on the border of Pn+3.

In [7] a pivoting elementary move P (v1) is an anticlockwise move of α to another

diagonal α′ about v1. The vertices of α′ are v1 and v′2, where v2 and v′2 are vertices

of a border edge and rotation is anticlockwise. A pivoting path from α to α′ is a

sequence of pivoting elementary moves starting at α and ending at α′.

Fix a positive integer n. Categories of diagonals of regular (n+3)-polygons were

introduced in [7]. Let Cn be the category with indecomposable objects all diagonals

of the polygon, and we take as objects formal direct sums of these diagonals. Mor-

phisms from α to α′ are generated by elementary pivoting moves modulo the mesh

relations, which are defined as follows. Let α and β be diagonals, with a and b the

vertices of α and c and d the vertices of β. Suppose P (c)P (a) takes α to β. Then

P (c)P (a) = P (d)P (b). Furthermore, if one of the intermediate edges in a pivoting

elementary move is a border edge, this move is zero. It is shown in [7] that this

category is equivalent to the cluster category defined in Section 1 in the An case.

We have the following from [7].
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• The irreducible morphisms in Cn are the direct sums of pivoting elementary

moves.

• The Auslander-Reiten translation of a diagonal is given by clockwise rota-

tion of the polygon.

• Ext1Cn
(α, α′) = Ext1C(α, α′) = 0 if and only if α and α′ do not cross.

It follows that a tilting object in C corresponds to a triangulation of Pn+3.

For any triangulation ∆ of Pn+3, it is possible to define a quiver Q∆ with n

vertices in the following way. The vertices of Q∆ are the midpoints of the diagonals

of ∆. There is an arrow between i and j in Q∆ if the corresponding diagonals

bound a common triangle. The orientation is i → j if the diagonal corresponding

to j is obtained from the diagonal corresponding to i by rotating anticlockwise

about their common vertex. It is known from [7] that all quivers obtained in this

way are quivers of cluster-tilted algebras of type An.

We defined the mutation of a quiver of a cluster-tilted algebra above. We also

define mutation of a triangulation at a given diagonal, by replacing this diagonal

with another one. This can be done in one and only one way. Let Q∆ be a

quiver corresponding to a triangulation ∆. Then mutation of Q∆ at the vertex i

corresponds to mutation of ∆ at the diagonal corresponding to i.

It follows that any triangulation gives rise to a quiver of a cluster-tilted alge-

bra, and that a quiver of a cluster-tilted algebra can be associated to at least one

triangulation.

Let Mn be the mutation class of An, i.e. all quivers obtained by repeated muta-

tion from An, up to isomorphisms of quivers. Let Tn be the set of all triangulations

of Pn+3. We can define a function γ : Tn →Mn, where we set γ(∆) = Q∆ for any

triangulation ∆ in Tn. Note that γ is surjective.

3. Counting cluster-tilted algebras of type An

If a and b are vertices on the border of a regular polygon, we say that the distance

between a and b is the smallest number of border edges between them. Let us say

that a diagonal from a to b is close to the border if the distance between a and b is

exactly 2. For a quiver Q∆ corresponding to a triangulation ∆, let us always write

vα for the vertex of Q∆ corresponding to the diagonal α.

If Q is a quiver of a cluster-tilted algebra of type An, we we have the following

facts [6,7,12].

• All cycles are oriented.

• All cycles are of length 3.
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• There does not exist two cycles that share one arrow.

Lemma 3.1. If a diagonal α of a triangulation ∆ is close to the border, then the

corresponding vertex vα in γ(∆) = Q∆ is either a source, a sink or lies on a cycle

(oriented of length 3).

Proof. All cycles are oriented and of length 3 in the An case. Suppose that α is a

diagonal in ∆ which is close to the border. There are only three cases to consider,

shown in Figure 1.

α

β

α β α
β

β

Figure 1. See the proof of Lemma 3.1. Sink, source and cycle.

In the first case α corresponds to a sink. There is no other vertex adjacent to vα

but vβ , or else the corresponding diagonal of this vertex would cross β. We have

the same for the second case where α is a source. In the third case vα lies on a

cycle. ¤

Note that if vα is a sink (or source) then vα has only one adjacent vertex if and

only if α is close to the border.

Lemma 3.2. Let ∆ be a triangulation and let γ(∆) = Q∆ be the corresponding

quiver. A quiver Q′ obtained from Q∆ by factoring out a vertex vα is connected if

and only if the corresponding diagonal α is close to the border.

Proof. Suppose α is close to the border. By Lemma 3.1, α corresponds to a sink,

a source or a vertex on a cycle. If vα is a sink or a source then vα has only one

adjacent vertex, so factoring out vα does not disconnect the quiver. Suppose vα

lies on a cycle. Then we are in the case shown in the third picture in Figure 1. We

see that there can be no other vertex adjacent to vα except vβ and vβ′ , since else

the corresponding diagonal would cross β or β′. Hence factoring out vα does not

disconnect the quiver.
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Next, suppose that factoring out vα does not disconnect the quiver. If vα is a

source or a sink with only one adjacent vertex, then vα is close to the border. If

not, first suppose vα does not lie on a cycle. Then it is clear that factoring out vα

disconnects the quiver, so we may assume that vα lies on a cycle. Then α is an

edge of a triangle consisting of only diagonals (i.e. no border edges), say β and β′.

Suppose there is a vertex vδ adjacent to vα, with vδ 6= vβ and vδ 6= vβ′ . Then vδ

can not be adjacent to vβ or vβ′ , since then we would have two cycles sharing one

arrow. We also see that vδ can not be adjacent to any vertex vγ from which there

exists a path to vβ or vβ′ not containing vα, or else there would be a cycle of length

greater than 3. Therefore factoring out vα would disconnect the quiver, and this is

a contradiction, thus there can be no other vertices adjacent to vα. It follows that

α can not be adjacent to any other diagonal but β and β′, hence α is close to the

border. ¤

Let ∆ be a triangulation of Pn+3 and let α be a diagonal close to the border.

The triangulation ∆′ of Pn+3−1 obtained from ∆ by factoring out α is defined as

the triangulation of Pn+3−1 by letting α be a border edge and leaving all the other

diagonals unchanged. We write ∆/α for the new triangulation obtained. See Figure

2.

α

Figure 2. Factoring out a diagonal close to the border

Lemma 3.3. Let ∆ be a triangulation and γ(∆) = Q∆. Factoring out a vertex

in Q∆ such that the resulting quiver is connected, corresponds to factoring out a

diagonal of ∆ close to the border.

Proof. Factoring out a vertex vα in Q such that the resulting quiver is connected,

implies that α is close to the border by Lemma 3.2. Then consider all cases shown

in Figure 1. ¤

Note that this means that γ(∆/α) = Q∆/vα. We have the following easy fact.
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Proposition 3.4. Let Q be a quiver of a cluster-tilted algebra of type An, with

n ≥ 3. Let Q′ be obtained from Q by factoring out a vertex such that Q′ is connected.

Then Q′ is the quiver of some cluster-tilted algebra of type An−1.

Proof. It is already known from [4] that Q′ is the quiver of a cluster-tilted algebra.

Suppose ∆ is a triangulation of Pn+3 such that γ(∆) = Q. Such a ∆ exists since γ

is surjective. It is enough, by Lemma 3.2, to consider vertices corresponding to a

diagonal close to the border. By Lemma 3.3, factoring out a vertex corresponding to

a diagonal α close to the border, corresponds to factoring out α. Then the resulting

triangulation of P(n−1)+3 corresponds to a quiver of a cluster-tilted algebra of type

An−1, since it is a triangulation. ¤

Now we want to do the opposite of factoring out a vertex close to the border. If

∆ is a triangulation of Pn+3, we want to add a diagonal α such that α is a diagonal

close to the border and such that ∆ ∪ α is a triangulation of P(n+1)+3. Consider

any border edge m on Pn+3. Then we have one of the cases shown in Figure 3.

β

m

β

m m

β

β

Figure 3.

We can extend the polygon at m for each case in Figure 3, and add a diagonal

α to the extension. See Figure 4 for the corresponding extensions at m.

βα β

α

α

β

β

Figure 4.
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It follows that for a given diagonal β, there are at most three ways to extend the

polygon with a diagonal α such that α is adjacent to β, and it is easy to see that

these extensions gives non-isomorphic quivers.

For a triangulation ∆ of Pn+3, let us denote by ∆(i) the triangulation obtained

from ∆ by rotating ∆ i steps in the clockwise direction. We define an equivalence

relation on Tn, where we let ∆ ∼ ∆(i) for all i. We define a new function γ̃ :

(Tn/ ∼) →Mn induced from γ. This is well defined, for if ∆ = ∆′(i) for an i, then

obviously Q∆ = Q∆′ in Mn. And hence since γ is a surjection, we also have that

γ̃ is a surjection. We actually have the following.

Theorem 3.5. The function γ̃ : (Tn/ ∼) →Mn is bijective for all n ≥ 2.

Proof. We already know that γ̃ is surjective.

Suppose γ̃(∆) = γ̃(∆′) in Mn. We want to show that ∆ = ∆′ in (Tn/ ∼) using

induction.

It is easy to check that (T3/ ∼) →M3 is injective. Suppose (Tn−1/ ∼) →Mn−1

is injective. Let α be a diagonal close to the border in ∆, with image vα in Q,

where Q is a representative for γ̃(∆). Then the diagonal α′ in ∆′ corresponding

to vα in Q is also close to the border. We have γ̃(∆/α) = γ̃(∆′/α′) = Q/vα by

Lemma 3.3, and hence, by hypothesis, ∆/α = ∆′/α′ in (Tn/ ∼).

We can obtain ∆ and ∆′ from ∆/α = ∆′/α′ by extending the polygon at some

border edge. Fix a diagonal β in ∆ such that vα and vβ are adjacent. This can

be done since Q is connected. Let β′ be the diagonal in ∆′ corresponding to vβ .

By the above there are at most three ways to extend ∆/α such that the new

diagonal is adjacent to β. It is clear that these extensions will be mapped by γ̃ to

non-isomorphic quivers. Also there are at most three ways to extend ∆′/α′ such

that the new diagonal is adjacent to β′, and all these extensions are mapped to

non-isomorphic quivers, thus ∆ = ∆′ in (Tn/ ∼). ¤

Note that this also means that ∆ = ∆′(i) for an i if and only if Q∆ ' Q∆′ as

quivers.

Now, let T be a cluster-tilting object of the cluster category C. This object

corresponds to a triangulation ∆ of Pn+3, and all tilting objects obtained from

rotation of ∆ gives the same cluster-tilted algebra. No other triangulation gives

rise to the same cluster-tilted algebra.

The Catalan number C(i) can be defined as the number of triangulations of an

i-polygon with i− 3 diagonals. The number is given by the following formula.
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n a(n)

2 1

3 4

4 6

5 19

6 49

n a(n)

7 150

8 442

9 1424

10 4522

11 14924
Table 1. Some values of a(n).

C(i) =
(2i)!

(i + 1)!i!
We now have the following.

Corollary 3.6. The number a(n) of non-isomorphic basic cluster-tilted algebras of

type An is the number of triangulations of the disk with n diagonals, i.e.

a(n) = C(n + 1)/(n + 3) + C((n + 1)/2)/2 + (2/3)C(n/3),

where C(i) is the i’th Catalan number and the second term is omitted if (n + 1)/2

is not an integer and the third term is omitted if n/3 is not an integer.

These numbers appeared in a paper by W. G. Brown in 1964 [1]. See Table 1

for some values of a(n).

We have that if T is a cluster-tilting object in C, then the cluster-tilted algebras

EndC(T ) and EndC(τT ) are isomorphic. In the An case we also have the following.

Theorem 3.7. Let T and T ′ be tilting objects in C, then the cluster-tilted algebras

EndC(T ) and EndC(T ′) are isomorphic if and only if T ′ = τ iT for an i ∈ Z.

Proof. Let ∆ be the triangulation of Pn+3 corresponding to T and let ∆′ be the

triangulation corresponding to T ′. If T ′ 6' τ iT for any i, then ∆′ is not obtained

from ∆ by a rotation, and hence EndC(T ) is not isomorphic to EndC(T ′) by Theorem

3.5. ¤

Proposition 3.8. Let Γ be a cluster-tilted algebra of type An. The number of

non-isomorphic cluster-tilting objects T such that Γ ' EndC(T ) has to divide n+3.

Proof. Let T be a tilting object in C corresponding to the triangulation ∆. Denote

by ∆(i) the rotation of ∆ i steps in the clockwise direction. Let 0 < s ≤ n be the

smallest number of rotations needed to obtain the same triangulation ∆, i.e. the

smallest s such that ∆ = ∆(s). It is clear from the above that T 6' T ′, where T ′
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corresponds to ∆(t) with 0 < t < s, hence s is the number of non-isomorphic tilting

objects giving the same cluster-tilted algebra. Now we only need to show that s

divides n + 3, but this is clear. ¤

The proof of the following is easy and is left to the reader. First recall from [10,

Proposition 3.8] that there are exactly C(n) non-isomorphic tilting objects in the

cluster category for type An, where C(n) denotes the n’th Catalan number.

Proposition 3.9. Consider the An case.

• There are always at least 2 non-isomorphic cluster-tilting objects giving the

same cluster-tilted algebra.

• There are at most n + 3 non-isomorphic cluster-tilting objects giving the

same cluster-tilted algebra.

• Let Γ be a cluster-tilted algebra of type An. If n + 3 is prime, there are

exactly n + 3 non-isomorphic cluster-tilting objects giving Γ. In this case

there are C(n)/n + 3 non-isomorphic cluster-tilted algebras, where C(n)

denotes the n’th Catalan number.
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