SOME CHARACTERIZATIONS OF EF-EXTENDING RINGS

Truong Cong Quynh

Received: 3 March 2008; Revised: 8 October 2008 Communicated by W. Keith Nicholson

ABSTRACT. In [19], Thuyet and Wisbauer considered the extending property for the class of (essentially) finitely generated submodules. A module M is called *ef-extending* if every closed submodule which contains essentially a finitely generated submodule is a direct summand of M. A ring R is called right ef-extending if R_R is an ef-extending module. We show that a ring Ris QF if and only if R is a left Noetherian, right GP-injective and right efextending ring. Moreover, we prove that R is right PF if and only if R is a right cogenerator, right ef-extending and I-finite.

Mathematics Subject Classification (2000): 16D50, 16D70, 16D80. Keywords: ef-extending rings, extending (or CS) rings, PF rings, QF rings.

1. Introduction

Throughout the paper, R represents an associative ring with identity $1 \neq 0$ and all modules are unitary R-modules. We write M_R (resp., $_RM$) to indicate that M is a right (resp., left) R-module. We also write J (resp., Z_r) for the Jacobson radical (resp., the right singular ideal) and $E(M_R)$ (resp., $Rad(M_R)$) for the injective hull of M_R (resp., radical of M_R). If X is a subset of R, the right (resp., left) annihilator of X in R is denoted by $r_R(X)$ (resp., $l_R(X)$) or simply r(X) (resp., l(X)) if no confusion appears. If N is a submodule of M (resp., proper submodule), we denote by $N \leq M$ (resp., N < M). Moreover, we write $N \leq^e M$ and $N \leq^{\oplus} M$ to indicate that N is an essential submodule and a direct summand of M, respectively. A module M is called uniform if $M \neq 0$ and every non-zero submodule of M is essential in M. A module M is finitely dimensional (or has finite rank) if E(M)is a finite direct sum of indecomposable submodules; or equivalently, if M contains no infinite independent family of non-zero submodules.

A ring R is called right P-injective if lr(a) = Ra for each $a \in R$. A ring R is called right GP-injective (resp., right AGP-injective) if for each $0 \neq a \in R$, there

The work was supported by the Natural Science Council of Vietnam.

exists $n \in \mathbb{N}$ such that $a^n \neq 0$ and $lr(a^n) = Ra^n$ (resp., $lr(a^n) = Ra^n \oplus X_a$ with $X_a \leq {}_RR$).

In [9] J. L. Gómez Pardo and P. A. Guil Asensio proved that every right Kasch right CS ring has finitely generated essential right socle, and hence R is a right PF ring if and only if R is a right cogenerator right CS ring. Their work extends a well-known theorem of B. Osofsky which states that a right Kasch right selfinjective ring is semiperfect with finitely generated essential right socle (i.e. R_R is an injective cogenerator). In this paper, we show that R is QF iff R is a left Noetherian, right GP-injective and right ef-extending ring. Moreover, we prove that R is right PF iff R is right cogenerator, right ef-extending and I-finite.

General background material can be found in [1], [6], [14], [20].

2. Definitions and results.

Definition 2.1. [19] A module M is called *ef-extending* if every closed submodule which contains essentially a finitely generated submodule is a direct summand of M. A ring R is called right ef-extending if R_R is an ef-extending module.

We refer to the following conditions on a module M_R :

- C1: Every submodule of M is essential in a direct summand of M.
- C2: Every submodule of M that is isomorphic to a direct summand of M is itself a direct summand of M.
- C3: $M_1 \oplus M_2$ is a direct summand of M for any two direct summand M_1 , M_2 of M with $M_1 \cap M_2 = 0$.

A module M_R is called extending or CS (quasi-continuous, continuous), if it satisfies C1 (both C1 and C3; both C1 and C2). A ring R is called right CS (right quasi-continuous; right continuous), if R_R is CS-module (quasi-continuous, continuous).

From the definition of ef-extending module and ring, we have:

i) A right CS ring is a right ef-extending ring. But the converse is not true in general.

Example. Let K be a division ring and $_{K}V$ be a left K-vector space of infinite dimension. Take $S = End(_{K}V)$, then it is well-known that S is regular but not right self-injective. Let

$$R = \begin{pmatrix} S & S \\ S & S \end{pmatrix},$$

then R is also regular, which implies R is right P-injective and every finitely generated right ideal of R is a direct summand of R. Thus, R is a right C2, right ef-extending ring. But R can not be right CS. For if R is right CS, then R is right continuous. Hence R is right self-injective by [14, Theorem 1.35], a contradiction.

ii) Every finitely generated submodule of an effect module M is essential in direct summand of M.

Some properties of ef-extending module is studied in [5], [16], [17], [19]. In this paper, we consider some other properties of ef-extending modules with condition C3.

Let M, N be R-modules. M is said to be N- F-injective if for each R-homomorphism $f: H \to M$ from a finitely generated submodule H of N into M extends to N.

Modification in proving [10, Lemma 5], we have:

Lemma 2.2. Let a module $M = M_1 \oplus M_2$ be a direct sum of submodules M_1, M_2 . Then the following conditions are equivalent:

- (1) M_2 is M_1 -F-injective.
- (2) For each finitely generated submodule N of M with $N \cap M_2 = 0$, there exists a submodule M' of M such that $M = M' \oplus M_2$ and $N \leq M'$.

Proof. (1) \Rightarrow (2). For i = 1, 2, let $\pi_i : M \to M_i$ denote the projection mapping. Consider the following diagram:

$$0 \longrightarrow N \xrightarrow{\alpha} M_1$$

$$\downarrow^{\beta} \overset{\phi}{\overset{\phi}{}} \overset{\cdot}{\overset{\cdot}{}} M_2$$

where $\alpha = \pi_1|_N$, $\beta = \pi_2|_N$. It is easy to see that α is a monomorphism. By (1), there exists a homomorphism $\phi : M_1 \to M_2$ such that $\phi \alpha = \beta$. Let $M' = \{x + \phi(x) | x \in M_1\}$. It is easy to check that $M = M' \oplus M_2$ and $N \leq M'$.

 $(2) \Rightarrow (1)$. Let K be a finitely generated submodule of M_1 , and $f: K \to M_2$ a homomorphism. Let $L = \{y - f(y) | y \in K\}$. Since K is finitely generated, then L is also a finitely generated submodule of M with $L \cap M_2 = 0$. By (ii), $M = L' \oplus M_2$ for some submodule L' of M such that $L \leq L'$. Let $\pi : M \to M_2$ denote the canonical projection (for the direct sum $M = L' \oplus M_2$). Let $\bar{f} = \pi|_{M_1} : M_1 \to M_2$ and, for any $y \in K$, we have $\bar{f}(y) = \bar{f}(y - f(y) + f(y)) = f(y)$. It means that \bar{f} is an extension of f and so M_2 is M_1 -F-injective. **Lemma 2.3.** [10, Lemma 6] The following statements are equivalent for a module M.

- (1) M satisfies C3.
- (2) For all direct summands P, Q of M with $P \cap Q = 0$, there exists a submodule P' of M such that $M = P \oplus P'$ and $Q \leq P'$.

Proposition 2.4. An ef-extending module M has C3 if and only if whenever $M = M_1 \oplus M_2$ is a direct sum of submodules M_1, M_2 , then M_2 is M_1 -F-injective.

Proof. (\Rightarrow) Assume that M is effected ing satisfying C3. Let N be a finitely generated submodule N of M with $N \cap M_2 = 0$. Since M is effected ing, there exists a direct summand N' of M such that N is essential in N'. Clearly $N' \cap M_2 = 0$. By Lemma 2.3, $M = M' \oplus M_2$ for some submodule M' such that $N' \leq M'$. Note that $N \leq N'$. Thus M_2 is M_1 -F-injective by Lemma 2.2.

(\Leftarrow) Assume that M_2 is M_1 -F-injective whenever $M = M_1 \oplus M_2$. By Lemma 2.2 and Lemma 2.3, M satisfies C3.

Corollary 2.5. If $M = M_1 \oplus M_2$ is effected extending, satisfies C3, then M_i is M_j -F-injective for all $i, j \in \{1, 2\}, i \neq j$.

From this we have the following result.

Theorem 2.6. The following conditions are equivalent for ring R:

- (1) R is QF.
- (2) $(R \oplus R)_R$ is effected ing, satisfies C3 and R has ACC on right annihilators.

Remark. Let p be a prime number. Then \mathbb{Z} -modules $\mathbb{Z}/p\mathbb{Z}$, $\mathbb{Z}/p^3\mathbb{Z}$ are efextending. But \mathbb{Z} -module $M = \mathbb{Z}/p\mathbb{Z} \oplus \mathbb{Z}/p^3\mathbb{Z}$ is not effected ing. Because $(1 + p\mathbb{Z}, p + p^3\mathbb{Z})\mathbb{Z}$ is a closed submodule of M (which contains a finitely generated, essential submodule) and not a direct summand of M.

We next consider some properties of ef-extending rings.

Lemma 2.7. [19] Every direct summand of an ef-extending module is ef-extending.

Lemma 2.8. Assume that $R_R = e_1 R \oplus e_2 R \oplus \cdots \oplus e_n R$, where each $e_i R$ is uniform for all i = 1, 2, ..., n. If every monomorphism $R_R \longrightarrow R_R$ is an epimorphism, then R is semiperfect.

Proof. By [14, Lemma 4.26].

A ring R is called *I-finite* if R contains no infinite orthogonal sets of idempotents (see [14]).

Lemma 2.9. Assume that R is right AGP-injective, right ef-extending and I-finite. Then R is semiperfect.

Proof. Since R is I-finite, there exists an orthogonal set of primitive idempotents $\{e_i\}_{i=1}^n$ such that $R_R = e_1 R \oplus e_2 R \oplus \cdots \oplus e_n R$. Since R is right effected ending, $e_i R$ is effected ing and so $e_i R$ is uniform for all $i = 1, 2, \ldots, n$. We will claim that every monomorphism $f : R \longrightarrow R$ is an epimorphism. Let a = f(1). Then $r(a^n) = 0, \forall n \ge 1$. Assume that $aR \ne R$. Since R is right AGP-injective, there exist a positive integer $m \ge 1$ and $X_1 \le RR$ such that $a^m \ne 0$ and $lr(a^m) = Ra^m \oplus X_1$. It implies that $R = Ra^m \oplus X_1$ (since $r(a^m) = 0$) and so $Ra^m = Re$ for some $e^2 = e \in R$. Then

$$0 = r(a^m) = r(Ra^m) = r(Re) = r(e) = (1 - e)R,$$

and hence e = 1 or $Ra^m = R$. It implies that R = Ra, i.e., ba = 1 for some $b \in R$. If $ab \neq 1$, then by [12, Example 21.26], there some $e_{ij} = a^i b^j - a^{i+1} b^{j+1} \in R$, $i, j \in \mathbb{N}$ such that $e_{ij}e_{kl} = \delta_{jk}e_{il}$ for all $i, j, k \in \mathbb{N}$ where δ_{jk} are the Kronecker deltas. Notice $e_{ij} \neq 0$ for all $i, j \in \mathbb{N}$, by construction. Set $e_i = e_{ii}$. Then $e_i e_j = \delta_{ij} e_i, \forall i, j \in \mathbb{N}$. Therefore we have

$$e_1 R \oplus e_2 R \oplus \cdots \oplus e_n R \oplus \cdots$$

this is a contradiction (because R has finite dimensional). Hence ab = 1 and so aR = R. This is a contradiction by our assumption. In short, f is an epimorphism. Then R is semiperfect by Lemma 2.8.

From this lemma we have:

Theorem 2.10. The following conditions are equivalent:

- (1) R is QF.
- (2) R is a left Noetherian, right GP-injective and right ef-extending ring.
- (3) *R* is a right *GP*-injective, right ef-extending ring and satisfies *ACC* on right annihilators.

Proof. $(1) \Rightarrow (2), (3)$ is clear.

 $(2) \Rightarrow (1)$ By Lemma 2.9, R is semiperfect. But R is right GP-injective, $J = Z_r$ and so R is right C2 by [14, Example 7.18].

We have $R = e_1 R \oplus \cdots \oplus e_n R$, $\{e_i\}_{i=1}^n$ is an orthogonal set of local idempotents. For every $i \neq j$ $(i, j \in \{1, 2, ..., n\})$ and $f : e_i R \to e_j R$ is a monomorphism. Then $e_i R \cong f(e_i R) \leq e_j R$. Moreover, R satisfies the right C2, $f(e_i R)$ is a direct summand of $e_j R$ or $f(e_i R) = e_j R$ (because $e_j R$ is indecomposable). Hence f is an isomorphism. Since R is right effected in the every uniform right ideal of R is essential in a direct summand of R_R . Therefore for every $i_0 \in \{1, 2, ..., n\}$,

 $\bigoplus_{\substack{\{1,2,\ldots,n\}\setminus\{i_0\}}} e_i R \text{ is } e_{i_0} R \text{-injective by [6, Corollary 8.9]. Since } e_i R \text{ is ef-extending,} \\ \text{indecomposable and so } e_i R \text{ is quasi-continuous. By [13, Theorem 2.13], } R \text{ is right} \\ \text{quasi-continuous. Thus } R \text{ is QF by [4, Corollary 5].} \end{cases}$

 $(3) \Rightarrow (1)$ By [2, Theorem 3.7], R is left Artinian. Argument of proving $(2) \Rightarrow (1)$ and [4, Theorem 5], it follows that R is QF.

A ring R is called *left Johns* if R is left Noetherian such that every left ideal is a left annihilator. Since every left Johns ring is left Noetherian right P-injective, the next corollary follows from Theorem 2.10.

Corollary 2.11. If R is left Johns, right ef-extending, then R is QF.

Corollary 2.12. [3, Theorem 2.21] If R is left Noetherian, right P-injective and right CS, then R is QF.

A ring R is called *right mininjective* if lr(a) = Ra, where aR is a simple right ideal of R.

Proposition 2.13. Let R be a right GP-injective, right ef-extending ring and satisfies ACC on left annihilators. If $Soc(R_R) \leq^e R_R$, then R is QF.

Proof. By a similar proof of Theorem 2.10, R is semiperfect. Since R is right GPinjective, R is right mininjective. Hence R is right Kasch by [14, Theorem 3.12]. It follows that $\operatorname{Soc}(R_R) = \operatorname{Soc}(_RR)$ by [2, Theorem 2.3]. Now will claim that R is left mininjective. In fact that, for every idempotent local $e \in R$. Since R is right ef-extending, eR is an ef-extending module and so uniform. It is easy to see that $\operatorname{Soc}(eR)$ is simple (because $\operatorname{Soc}(R_R) \leq e R_R$). We have $\operatorname{eSoc}(_RR) = eR \cap \operatorname{Soc}(_RR) =$ $eR \cap \operatorname{Soc}(R_R) = \operatorname{Soc}(eR)$ is simple. Therefore R is left mininjective by [14, Theorem 3.2]. Thus R is QF by [16, Theorem 2.7].

Note that in [17], the authors proved that if R is a right AGP-injective ring, satisfying ACC on left (or right) annihilators and $(R \oplus R)_R$ is effected and then R is QF. But we do not know whether the condition " $\operatorname{Soc}(R_R) \leq^e R_R$ " in above proposition can omit or not. A ring R is called *left CF*, if every cyclic left R-module can be embedded in a free module. Now we consider the property of left CF, right effected ring:

Proposition 2.14. Let R be left CF, right ef-extending ring. Then following conditions are equivalent:

- (1) R is QF.
- (2) $J \leq Z_l$.
- (3) $S_l \leq S_r$.
- (4) R is a left mininjective ring.

Proof. $(1) \Rightarrow (2), (1) \Rightarrow (4) \Rightarrow (3)$ are obvious.

 $(3) \Rightarrow (1)$ Since R is left CF, R is right P-injective and left Kasch. Let T be a maximal left ideal of R. Since R is left Kasch, $r(T) \neq 0$. There exists $0 \neq a \in r(T)$ or $T \leq l(a)$ which yields T = l(a) by maximality of T and so r(T) = rl(a). Since R is right ef-extending, then $aR \leq eR$ for some $e^2 = e \in R$. On the other hand, $aR \leq rl(a) \leq eR$ and then $rl(a) \leq eR$. Hence $r(T) \leq eR$. It implies that R is semiperfect by [14, Lemma 4.1]. By Theorem 2.10, R is right continuous. Therefore $S_l \leq eR_R$ by [21, Theorem 10]. By (3) $S_r \leq eR_R$. It is easy to see that S_r is finitely generated as right R-module. Hence R is left finitely cogenerated by [14, Theorem 5.31]. Since R is left CF, it follows that R is left Artinian. Thus R is QF.

(2) \Rightarrow (1) As above, R is semiperfect. So, by (2), $S_r = l(J) \ge l(Z_l) \ge S_l$. Arguing as above proves (1).

J. L. Gómez Pardo and P. A. Guil Asensio proved that R is right PF iff R is injective cogenerator in Mod-R. For a right effectending ring R, we have:

Firstly we have the following lemma:

Lemma 2.15. [14, Lemma 1.54] Let $P_R \neq 0$ be projective. Then the following are equivalent:

- (1) Rad(P) is a maximal submodule of P that is small in P.
- (2) End(P) is local.

Now we prove the main result:

Theorem 2.16. The following conditions are equivalent for a ring R:

- (1) R is right PF.
- (2) R is a right cogenerator, right ef-extending and I-finite.

Proof. $(1) \Rightarrow (2)$ is clear.

(2) \Rightarrow (1) By hypothesis, $R = u_1 R \oplus \cdots \oplus u_n R$ where each $u_i R$ is indecomposable. Since R is right effectending, $u_i R$ is uniform for every i = 1, 2, ..., n. Hence R has right finite dimensional and right Kasch, let $\{K_1, K_2, \cdots, K_n\}$ be a set of representatives of the simple right R-modules. If we write $E_i = E(K_i)$, then E_1, \dots, E_n are pairwise nonisomorphic indecomposable injective modules. For each *i*, since R_R is cogenerator, there exists an embedding $\sigma: E(K_i) \longrightarrow R^{(I)}$ for some set I. Then $\pi\sigma \neq 0$ for some projection $\pi: R^{(I)} \longrightarrow R$, so $(\pi\sigma)|_{K_i} \neq 0$ and hence is monic. Thus $\pi \sigma : E(K_i) \longrightarrow R$ is monic, and so $E(K_i)$ is projective. Hence $End(E_i)$ is local for each i, and so by Lemma 2.15 shows that $Rad(E_i)$ is maximal and small in E_i . Hence $T_i = E_i/Rad(E_i)$ is simple and E_i is a projective cover of T_i . Moreover, if $T_i \cong T_j$ then $E_i \cong E_j$ by [14, Corollary B.17], and hence i = j. Thus $\{T_1, \dots, T_n\}$ is a set of distinct representatives of the simple right *R*-modules and it follows that every simple right R-module has a projective cover. Thus R is semiperfect by [1, Lemma 25.4]. Let $\{e_1, \ldots, e_n\}$ be a basic set of local idempotents in R. Since each $E_i = E(e_i R / Rad(e_i R))$ is indecomposable and projective we have $E_i \cong e_{\sigma(i)}R$ for some $\sigma(i) \in \{1, \ldots, n\}$. Since the E_i are pairwise nonisomorphic, it follows that σ is a bijection and hence that each $e_i R$ is injective with simple essential socle. Thus R is right self-injective with $Soc(R_R) \leq^e R_R$ and so it is a right PF ring.

Question. Whether the condition "I-finite" in Theorem 2.16 can omit or not?

Theorem 2.17. The following conditions are equivalent:

- (1) R is right and left PF.
- (2) R is a left cogenerator and $(R \oplus R)_R$ is ef-extending.
- (3) R is a right cogenerator and $_R(R \oplus R)$ is ef-extending.

Proof. $(1) \Rightarrow (2), (3)$ is clear.

 $(2) \Rightarrow (1)$ Since R is left cogenerator, R is left Kasch. Then by proving of [17, Theorem 2.8] or by proving of Theorem 2.10 and [14, Example 7.18], R is right self-injective. By [11, Theorem 12.1.1], R is two-sided PF.

 $(3) \Rightarrow (1)$ By a similar proof of $(2) \Rightarrow (1)$.

Acknowledgment. The authors would like to thank the referee for the valuable suggestions and comments.

References

- F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer-Verlag, New York, 1974.
- [2] J. Chen and N. Ding, On general principally injective rings, Comm. Algebra, 25(5)(1999), 2097 - 2116.
- [3] J. L. Chen and W. X. Li, On artiness of right CF rings, Comm. Algebra, 32(11) (2004), 4485 - 4494.
- [4] J. Chen, L. Shen and Y. Zhou, *Characterization of QF rings*, Comm. Algebra, 35(2007), 281-288.
- [5] N. Chien and L. V. Thuyet, On ef-extending modules, Southeast Asian Bull. Math., 26 (2003), 909-916.
- [6] N. V. Dung, D. V. Huynh, P. F. Smith and R. Wisbauer, Extending Modules, Pitman, 1996.
- [7] C. Faith, Algebra II: Ring Theory, Springer-Verlag, Berlin, (1976).
- [8] K. R. Goodearl, Ring Theory: Nonsingular Rings and Modules, Dekker, New York, 1976.
- [9] J. L. Gómez Pardo and P. A. Guil Asensio, *Rings with finite essential socle*, Proc. Amer. Math. Soc., 125 (1997), 971-977.
- [10] A. Harmanci and P. F. Smith, *Finite direct sums of CS-Modules*, Houston J. Math., 19(4)(1995), 523-532.
- [11] F. Kasch, Modules and Rings, Academic Press, London, New York, 1982.
- [12] T. Y. Lam, A First Course in Noncommutative Rings, Springer Graduate Text, 1991.
- [13] S. H. Mohammed and B. J. Müller, Continuous and Discrete Modules, London Math. Soc., LN 147, Cambridge Univ. Press, 1990.
- [14] W. K. Nicholson and M. F. Yousif, Quasi-Frobenius Rings, Cambridge Univ. Press, 2003.
- [15] W. K. Nicholson and M. F. Yousif, CS rings and Nakayama permutations, Comm. Algebra, 25(1997), 3787-3795.
- [16] T. C. Quynh and L. V. Thuyet, On rings with ACC on annihilators and having essential socles, Proc. Int. Math. and Appl. (ICMA, Bangkok 2005), Contribution in Math. and Appl., 227-234, 2006.
- [17] T. C. Quynh and L. V. Thuyet, *Some properties of ef-extending rings*, to appear in Math. J. Okayama Univ.

- [18] L. V. Thuyet and T. C. Quynh, On general injective rings with chain conditions, to appear in Algebra Coll.
- [19] L. V. Thuyet and R. Wisbauer, Extending property for finitely generated submodules, Vietnam J. Math., 25 (1997), 65 - 73.
- [20] R. Wisbauer, Foundations of Module and Ring Theory; Gordon and Breach, Reading, 1991.
- [21] M. F. Yousif and Y. Zhou, Pseudo-Frobenius rings: characterizations and questions, Comm. Algebra, 31(9)(2003), 4473 - 4484.
- [22] Y. Zhou, Rings in which certain right ideals are direct summands of annihilators, J. Aust. Math. Soc., 73 (2002), 335 - 346.

Truong Cong Quynh

Department of Mathematics Danang University 459 Ton Duc Thang DaNang city, Vietnam e-mails: tcquynh@dce.udn.vn matht2q2004@hotmail.com