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Abstract. Let D be an integral domain of any characteristic. We say that

p(x) ∈ D[x] is D-nice if p(x) and its derivative p′(x) split in D[x]. We begin

by presenting a new equivalence relation for D-nice polynomials over integral

domains D of characteristic p > 0, which leads to an important modification of

our definition of equivalence classes of D-nice polynomials. We then present a

partial solution to the unsolved problem of constructing and counting equiva-

lence classes of D-nice polynomials p(x) with four distinct roots. We consider

the following three cases separately: (1) D has characteristic 0, (2) D has

characteristic p > 0 and the degree of p(x) is not a multiple of p, and (3)

D has characteristic p > 0 and the degree of p(x) is a multiple of p. In all

these cases we give formulas for constructing some examples. In the final case

we also count equivalence classes of D-nice polynomials for certain choices of

the multiplicities of the roots of p(x). To conclude, we state several problems

about D-nice polynomials with four roots that remain unsolved.
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1. Introduction

Let D be any integral domain of any characteristic. We say that a polynomial

p(x) ∈ D[x] splits in D[x] if, for some n ≥ 0, p(x) can be written in the form

p(x) = a(x − r1)(x − r2) · · · (x − rn) where a 6= 0 and a, r1, . . . , rn ∈ D. We

say that p(x) ∈ D[x] is D-nice (or nice in D) if p(x) and its derivative p′(x)

split in D[x]. By our definition of splitting, if p(x) is D-nice, then p′(x) 6= 0.

Most mathematicians who had researched Z-nice polynomials since about 1960

were interested in constructing polynomials with integer coefficients, roots, and

critical points—polynomials that are “nice” for calculus students to sketch (see [1]

and [4], for example). Since many earlier papers use the term nice instead of Z-nice

(see [1] and [3], for example), we too will often use the term nice instead of Z-nice.
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The problem of constructing, describing, and classifying nice polynomials is now

worthy in its own right (see [11]-[12]). We find it worthwhile to extend these earlier

results in Z to all integral domains D of any characteristic.

The papers [5] and [9] present a new approach to D-nice polynomials by con-

sidering the relations between the roots and critical points of polynomials in D[x].

This new approach has led to many important new results on nice and D-nice

polynomials (see [6]-[10]), including the results in this paper. Before these papers

were written, [2] was considered the most important paper on nice polynomials.

This same paper gives an extensive list of many of the papers on nice polynomials

written before 2000.

In the next section, we present a new equivalence relation for D-nice polynomials

p(x) over integral domains D of characteristic p > 0. This leads to an important

modification of our definition of equivalence classes of D-nice polynomials. As a

major consequence of this new equivalence relation, we may assume none of the

multiplicities of the roots of p(x) are multiples of p. This assumption greatly sim-

plifies the study of D-nice polynomials over integral domains of characteristic p > 0.

In Section 3, we present a partial solution to the open problem of constructing and

counting equivalence classes of D-nice polynomials p(x) with four distinct roots.

We consider two cases separately: the case where D has characteristic 0 and the

case where D has characteristic p > 0 and the degree of p(x) is not a multiple of

p. In Section 4, we present a partial solution to the analogous problem concerning

D-nice polynomials p(x) with four distinct roots where D has characteristic p > 0

and where the degree of p(x) is a multiple of p. In our partial solution we give

formulas for constructing all such D-nice polynomials over integral domains D of

characteristics 2 or 3. In Section 5, we conclude by stating several problems about

D-nice polynomials with four roots that remain unsolved.

2. Preliminaries

The type of a polynomial is a list of the multiplicities of its distinct roots. For

example, all polynomials of the type (6,5,5,3) are of the form p(x) = a(x− r1)6(x−
r2)5(x− r3)5(x− r4)3 where r1, r2, r3, and r4 are all distinct and a 6= 0.

Most of the earlier papers on nice polynomials note that horizontal translations

by integers, horizontal or vertical stretches by integer factors, and reflections over

the coordinate axes transform a nice polynomial p1(x) into another nice polynomial
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p2(x). In other words, these transformations preserve nicety. Each of these trans-

formations has an inverse transformation that transforms p2(x) into p1(x). The

paper [5] extends these transformations and their inverses to all integral domains

D of characteristic 0 [5, Proposition 2.1 and Corollary 2.2]. But it is easy to extend

these to integral domains D of characteristic p > 0. For convenience, we will refer

to these transformations by using the same geometric descriptions we use in Z and

in Q, even if D is not ordered (i.e., even if D has no true geometric meaning). As

in earlier papers, we define the horizontal translation of p(x) by a ∈ D units to

be p(x − a). The horizontal stretch and compression of p(x) by a nonzero factor

of a ∈ D are defined by p(x/a) and p(ax), respectively. If necessary, the division

occurs in the field of fractions of D. The vertical stretch and compression of p(x) by

a nonzero factor of a ∈ D are defined by ap(x) and 1
ap(x), respectively. Reflections

of p(x) over the x- and y-axes are defined by −p(x) and p(−x), respectively. We

note that all these transformations preserve the type of a polynomial.

A recently discovered transformation that preserves nicety is the power trans-

formation; its inverse is the root transformation [6, Theorem 2.1]: For any natural

number n, a polynomial p(x) is nice iff [p(x)]n is nice. This result clearly holds

in any integral domain D of characteristic 0 and holds in integral domains D of

characteristic p > 0 as long as n is not a multiple of p. If n is a multiple of

p, then d
dx [p(x)]n = 0; so, by our definition, [p(x)]n is not D-nice. It is obvious

that the root transformation transforms a D-nice polynomial p1(x) into another

D-nice polynomial p2(x) iff p1(x) = [p2(x)]n for some natural number n and some

D-nice polynomial p2(x). The power transformation and the root transformation

do not preserve the type of a polynomial. More precisely, if p(x) is of the type

(m1, . . . ,ms), then [p(x)]n is of the type (nm1, . . . , nms).

The most recently discovered transformation that preserves nicety of polynomials

p(x) = a(x−r1)m1(x−r2)m2 · · · (x−rn)mn over integral domains D of characteristic

p > 0 is the transformation that replaces one or more of the mi’s with positive inte-

gers m′
i’s so that mi = m′

i mod p. We shall call this transformation a replacement

of multiplicities mod p. In particular, with this transformation, we may replace

multiplicities mi that are multiples of p with 0 (i.e., remove the factors (x− ri)mi

for such mi). Thus, if m1, . . . , ms are not multiples of p but m′
1, . . . ,m

′
t are, then a

D-nice polynomial of the type (m1, . . . , ms, m
′
1, . . . , m

′
t) becomes a D-nice polyno-

mial of the type (m1, . . . ,ms) under this transformation. Since this transformation

is important for the study of D-nice polynomials over integral domains D of char-

acteristic p > 0 and since, as of now, this paper is the only one that mentions this
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transformation, we state this transformation as a theorem and prove below that it

preserves nicety.

Theorem 2.1. Suppose D is an integral domain of characteristic p > 0. Suppose

that m1, . . . , ms are not multiples of p but that m′
1, . . . , m

′
t are. Then p1(x) =

a(x − r1)m1 · · · (x − rs)ms(x − r′1)
m′

1 · · · (x − r′t)
m′

t is D-nice iff p2(x) = a(x −
r1)m1 · · · (x − rs)ms is. Furthermore, if mi = m′

i mod p for all i, then p1(x) =

a(x− r1)m1 · · · (x− rs)ms is D-nice iff p2(x) = a(x− r1)m′
1 · · · (x− rs)m′

s is.

Proof. To see this, first note that if p1(x) is a polynomial of the type (m1, . . . ,ms)

and p2(x) is a polynomial of the type (m′
1, . . . ,m

′
t) where p1(x) and p2(x) split in

D[x] and have no roots in common, then p(x) = p1(x)p2(x) is a polynomial of the

type (m1, . . . ,ms,m
′
1, . . . , m

′
t). Since p′(x) = p′1(x)p2(x), p(x) is D-nice iff p1(x) is.

A slight variant of this argument proves the second part of the theorem. ¤

Translating horizontally a ∈ D units, stretching horizontally or vertically by

factors of a ∈ D, reflecting over the coordinate axes, taking powers, and replacing

multiplicities mod p (mi with m′
i) are transformations we call equivalence trans-

formations. The corresponding inverse transformations are translating horizontally

−a ∈ D units, compressing horizontally or vertically by factors of a ∈ D, reflecting

over the coordinate axes, taking roots, and replacing multiplicities mod p (m′
i with

mi). Although equivalence transformations do transform a D-nice polynomial into

a D-nice polynomial, these inverse transformations do not necessarily transform a

D-nice polynomial into another D-nice polynomial. For example, a horizontal or

vertical compression may transform a D-nice polynomial p1(x) into a polynomial

p2(x) where p2(x) is nice in the field of fractions of D rather than in D. The root

transformation applied to arbitrary D-nice polynomials may result in nonpolyno-

mials.

Since any finite composition of equivalence transformations transform a D-nice

polynomial p1(x) into another D-nice polynomial p2(x) (the corresponding inverse

transformations transform p2(x) into p1(x)), we say that the two D-nice polynomi-

als p1(x) and p2(x) are equivalent whenever p1(x) can be transformed into p2(x)

and vice-versa by a finite composition of equivalence transformations or their in-

verse transformations. Since, by the power transformation and its inverse the root

transformation, any D-nice polynomial of the type (nm1, . . . , nms) is equivalent to

a D-nice polynomial of the type (m1, . . . ,ms) for any n > 1 if D has characteristic

0 and any n > 1 that is not a multiple of p if D has characteristic p > 0, we consider

these types to be equivalent. By Theorem 2.1, if D has characteristic p > 0, any
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D-nice polynomial of the type (m1, . . . , ms) is equivalent to a D-nice polynomial

of the type (m′
1, . . . ,m

′
s) where mi = m′

i mod p, so we consider these types to be

equivalent. Likewise, if m1, . . . , ms are not multiples of p but m′
1, . . . , m

′
t are, then

we consider the types (m1, . . . , ms, m
′
1, . . . ,m

′
t) and (m1, . . . , ms) equivalent. When

we count equivalence classes of D-nice polynomials, we count equivalence classes of

D-nice polynomials of equivalent types.

Using the horizontal translation, we may assume p(x) has a root at 0. Mul-

tiplying p(x) by a nonzero element in D (which is a vertical stretch or com-

pression) results in an equivalent D-nice polynomial, so we may assume p(x) is

monic. Using the power transformation, we may assume the multiplicities mi

have no common factor. These three assumptions greatly simplify the problem

of constructing and counting equivalence classes of D-nice polynomials p(x) with

four distinct roots. By our assumptions, such polynomials have the form p(x) =

xm0(x− r1)m1(x− r2)m2(x− r3)m3 with m0, m1, m2, and m3 having no common

factor. Furthermore, if D has characteristic p > 0 and one of the multiplicities is

a multiple of p, then, by Theorem 2.1, such a D-nice polynomial is equivalent to a

D-nice polynomial with three roots. A paper on constructing and counting equiv-

alence classes of all types of D-nice polynomials with three roots is currently in

progress and will be submitted for publication soon. Then the methods and results

in this paper can be used to construct and count equivalence classes of these types

of D-nice polynomials. If two or three of the multiplicities are multiples of p, then

such D-nice polynomials are equivalent to D-nice polynomials with two roots or one

root, respectively. It is easy to check that all types of D-nice polynomials with one

or two roots exist and that any two of the same type are equivalent: Any D-nice

polynomial with one root of multiplicity d is equivalent to the D-nice polynomial

p(x) = xd, and any D-nice polynomial of the type (m0, m1) is equivalent to the

D-nice polynomial p(x) = xm0(x−d)m1 where d = m0 +m1 is not a multiple of the

characteristic of D and to the D-nice polynomial p(x) = xm0(x − 1)m1 if d is. In

general, if a D-nice polynomial p(x) has N roots and one or more of the multiplic-

ities are multiples of p, then p(x) is equivalent to a D-nice polynomial with fewer

with N roots. Hence, we may assume that none of the multiplicities of the roots of

p(x) are multiples of p. With this assumption, we significantly reduce the number

of cases we need to consider when we study D-nice polynomials with a specified

degree or a specified number of roots since we need not consider any of the possible

cases where one or more of the multiplicities of the roots are multiples of p. Indeed

Theorem 2.1 is an important new result for the study of D-nice polynomials over

integral domains D of characteristic p > 0.
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3. D-Nice Polynomials p(x) with Four Roots Where the Degree of p(x)

Is Not a Multiple of p

We now consider the problem of constructing and counting equivalence classes of

D-nice polynomials p(x) with four distinct roots. In this section we consider the

cases where D has characteristic 0 and where D has characteristic p > 0 and the

degree of p(x) is not a multiple of p. Some of our results will apply to both cases

simultaneously (for example, Lemma 3.1 below does). To simplify wording for these

results, we will describe both cases simultaneously by saying that p(x) is a D-nice

polynomial over an integral domain D of characteristic p ≥ 0 where the degree of

p(x) is not a multiple of p. For such a p(x) = xm0(x− r1)m1(x− r2)m2(x− r3)m3 ,

its derivative is p′(x) = dxm0−1(x− r1)m1−1(x− r2)m2−1(x− r3)m3−1 ·
(x−c1)(x−c2)(x−c3). We now state in Lemma 3.1 below the relations between the

roots and critical points of such polynomials p(x) ∈ D[x]. We will use this lemma

to derive a formula for constructing some (but not all) of the D-nice polynomials

of these types.

Lemma 3.1. Let D be any integral domain of characteristic p ≥ 0. Let p(x) =

xm0(x − r1)m1(x − r2)m2(x − r3)m3 ∈ D[x] be a polynomial of degree d = m0 +

m1 + m2 + m3 with four roots in D where d is not a multiple of p. Let p′(x) =

dxm0−1(x − r1)m1−1(x − r2)m2−1(x − r3)m3−1(x − c1)(x − c2)(x − c3). Then p(x)

is D-nice iff there exist c1, c2, and c3 in D such that
3∑

i=1

(d−mi)ri = d(c1 + c2 + c3), (3.1)

∑

1≤i<j≤3

(d−mi −mj)rirj = d(c1c2 + c1c3 + c2c3), (3.2)

m0r1r2r3 = dc1c2c3. (3.3)

Proof. These relations follow from [9, Corollary 3.3]. ¤

Remark. The proof of Lemma 4.2, which appears later in this paper, can be

modified appropriately to prove Lemma 3.1 directly without using [9, Corollary

3.3].

By Lemma 3.1, there is a one-to-one correspondence between all solutions to

(3.1)-(3.3) in D and all D-nice polynomials p(x) of the type (m0,m1,m2,m3) as

described above. Thus, to derive a formula for constructing these types of D-nice

polynomials, we may solve (3.1)-(3.3) in D. The problem of deriving such a formula

is only partially solved since no formula that gives all solutions to (3.1)-(3.3) in D
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has been derived (see Problems 5.1-5.2). But the formula we derive does allow us

to construct some of the solutions to (3.1)-(3.3) in D. In particular, our formula

will allow us to construct D-nice polynomials of any given type (m0,m1,m2,m3)

over integral domains of characteristic 0. We begin with the case D = Z since nice

polynomials (i.e., Z-nice polynomials) are of special interest. We can then easily

generalize our work to derive a formula for constructing D-nice polynomials over

other integral domains D of characteristic p ≥ 0.

Since it is easier to construct solutions to (3.1)-(3.3) in Q than in Z, we construct

these solutions in Q instead. Whenever we construct a Q-nice polynomial p(x) with

our formula, we may construct an equivalent nice polynomial by stretching p(x)

horizontally by an appropriate factor. We note that it is easy to extend Lemma

3.1 from polynomials over D to polynomials over the field of fractions of D. The

papers [7], [8] and [10] present constructions of nice and D-nice polynomials by

using a similar approach.

Using the horizontal compression for Q-nice polynomials, we may assume r1 = 1.

In this case, (3.1)-(3.3) become

d−m1 + (d−m2)r2 + (d−m3)r3 = d(c1 + c2 + c3), (3.4)

(d−m1 −m2)r2 + (d−m1 −m3)r3 + (d−m2 −m3)r2r3 =

d(c1c2+c1c3 + c2c3), (3.5)

m0r2r3 = dc1c2c3. (3.6)

We now solve each of the equations (3.4)-(3.6) for r2 in terms of c1. Solving (3.4)

for r2 in terms of c1, we have

r2 =
d

d−m2
c1 + A (3.7)

where A = d(c2+c3)+(m3−d)r3+m1−d
d−m2

. Solving (3.5) for r2 in terms of c1, we have

r2 = Bc1 + C (3.8)

where B = d(c2+c3)
d−m1−m2+(d−m2−m3)r3

and C = dc2c3+(m1+m3−d)r3
d−m1−m2+(d−m2−m3)r3

. Finally, solv-

ing (3.6) for r2 in terms of c1, we have

r2 = Dc1 (3.9)

where D = dc2c3
m0r3

. If we find a value of c1 (in terms of the other variables) so

that (3.7) and (3.8) are equal and so that (3.9) and (3.7) are equal as well, then,

for that particular c1, all three expressions for r2 are equal. It will then follow

that this value of c1 gives us a solution to (3.4)-(3.6). We now find a value of c1
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(in terms of the other variables) so that the expressions for r2 in (3.7) and (3.8)

are equal. Setting these expressions equal and assuming d
d−m2

6= B, we see that

c1 = (C −A)( d
d−m2

−B)−1 is a solution to this equation. For this value of c1, the

expressions for r2 in (3.7) and (3.8) are equal.

We note that (3.7) and (3.9) are equal if D = d
d−m2

and A = 0. Since these

conditions are not necessary (we give an example later to show this), the formula

we derive will not allow us to construct all rational solutions to (3.4)-(3.6). It

is not clear right now how to find necessary conditions and how to use them to

construct all rational solutions to (3.4)-(3.6). However, with our formula, we can

still construct nice polynomials of any given type with four distinct roots, which

we will prove later. The equations D = d
d−m2

and A = 0 lead to the system of

equations

(d−m3)r3 + d−m1 = d(c2 + c3),

m0r3 = (d−m2)c2c3.

Solutions to this system of equations tell us which values of c2, c3, and r3 give us a

value of c1 that leads to a solution to (3.4)-(3.6). To solve this system, we regard

r3 and c3 as variables and treat c2 as a free variable. Then the system becomes

a linear system of equations in the two variables r3 and c3. We then rewrite the

system of equations as

(d−m3)r3 − dc3 = dc2 + m1 − d,

m0r3 − (d−m2)c2c3 = 0.

If we assume there are values of c2 so that the solution to this system is unique

(which we will prove shortly), then Cramer’s rule gives us the following solution:

r3 =
c2(m2 − d)(m1 + dc2 − d)

m0d− d2c2 + dm2c2 + dm3c2 −m2m3c2
, (3.10)

c3 =
m0(d− dc2 −m1)

m0d− d2c2 + dm2c2 + dm3c2 −m2m3c2
. (3.11)

Summary of Construction. In short, to construct a Q-nice polynomial p(x) with

four distinct roots, we choose a nonzero rational value for c2, and we use (3.10) and

(3.11) to find c3 and r3. Then we let c1 = C( d
d−m2

−B)−1 (since A = 0 with these

choices of c2, c3, and r3). Finally, we let r2 = d
d−m2

c1 (actually, we may use any

one of the values (3.7)-(3.9) since all three are equal in this case). And r1 = 1,

as we assumed from the beginning. Stretching p(x) horizontally by an appropriate

factor will give us a nice polynomial with four distinct roots.
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The following example shows that the sufficient conditions A = 0 and D = d
d−m2

for finding a solution to (3.4)-(3.6) are not necessary (we found this example with

a computer search). It easy to check that m0 = 2, m1 = m2 = m3 = 1, r1 = 1,

r2 = 4/3, r3 = 7/4, c1 = 1/2, c2 = 8/5, and c3 = 7/6 is a solution to (3.4)-(3.6).

However, A = 17/24 6= 0 and D = 8/3 6= d/(d − m2)(= 5/4), which proves that

these conditions are not necessary for finding a solution to (3.4)-(3.6).

As an illustration, we now construct several examples of nice polynomials using

our formulas. For the first example, let m0 = 2 and m1 = m2 = m3 = 1. Choose

c2 = 2. Then r3 = 24/11, c3 = 6/11, r2 = 12/7, and c1 = 48/35. Stretching this

example horizontally by 385, we obtain the nice polynomial

p(x) = x2(x− 385)(x− 660)(x− 840), (3.12)

p′(x) = 5x(x− 210)(x− 528)(x− 770).

For the second example, let m0 = m1 = 2 and m2 = m3 = 1. Choose c2 = 3/2.

Then r3 = 25/17, c3 = 20/51, c1 = 75/59, and r2 = 90/59. Stretching this example

horizontally by 6018, we obtain the nice polynomial

p(x) = x2(x− 6018)2(x− 9180)(x− 8850), (3.13)

p′(x) = 6x(x− 6018)(x− 2360)(x− 7650)(x− 9027).

Note that this sextic is not symmetric. A polynomial p(x) ∈ D[x] is called symmet-

ric if there exists a c, called a center, such that p(c+x) = p(c−x) and antisymmetric

if there exists a center c such that p(c + x) = −p(c − x). It is easy to check that

if p(x) is symmetric with a center c, then p′(x) is antisymmetric with a center c.

Furthermore, if D has any characteristic but 2, then p(c) = −p(c) for any antisym-

metric p(x), which says that any center of an antisymmetric polynomial is a root.

Using these facts, we see that, if example (3.13) were symmetric, then the only

possible choices for a center are its critical points. But it is easy to check that none

of its critical points are centers, so it follows that this sextic is not symmetric.

For the last example, let m0 = 2, m1 = m2 = 1, and m3 = 3. Choose c2 = 4.

Then r3 = 264/41, c3 = 22/41, c1 = 1056/833, and r2 = 176/119. Stretching this

example horizontally by 34153, we obtain the nice polynomial

p(x) = x2(x− 34153)(x− 50512)(x− 219912)3, (3.14)

p′(x) = 7x(x− 219912)2(x− 18326)(x− 43296)(x− 136612).

Note that when we derived our formulas above, we used only those properties

that hold for any field, not any properties specific to Q, so our formulas allow us to
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construct D-nice polynomials over any integral domain D of characteristic 0. Since

Lemma 3.1 holds whenever D is an integral domain of characteristic p > 0 and

none of the numbers d, m0, m1, m2, and m3 are multiples of p, we may use our

formulas to construct D-nice polynomials of these types over such integral domains

D. However, our formulas fail if D is a finite field that is “too small.” And there

are choices of the characteristic p and the type (m0,m1,m2,m3) where we cannot

guarantee that our formulas work. We will explain these problems in more detail

later.

We now construct two examples of Z[i]-nice polynomials using our formulas. For

the first example, let m0 = 2 and m1 = m2 = m3 = 1, and choose c2 = 1 + i.

Then r3 = 72/73 + (100/73)i, c3 = 43/73 + (7/73)i, c1 = 112/85 + (8/17)i, and

r2 = 28/17 + (10/17)i. Stretching this example horizontally by 6205 + 6205i, we

obtain the Z[i]-nice polynomial

p(x) = x2[x− (6205 + 6205i)][x− (6570 + 13870i)][x− (−2380 + 14620i)],

(3.15)

p′(x) = 5x[x− (5256 + 11096i)][x− 12410i][x− (3060 + 4250i)].

This example is not equivalent to a nice polynomial. Any two such polynomials of

this type with the double root at 0 are equivalent under only horizontal stretches

and compressions and reflections over the y-axis. Thus, if example (3.15) were

equivalent to a nice polynomial, then the ratio of any two nonzero roots would be

a rational number, which gives us a contradiction.

For the second example, let m0 = m1 = 2 and m2 = m3 = 1, and choose c2 = i.

Then r3 = −140/769 + (990/769)i, c3 = 396/769 + (56/769)i, c1 = 85/106 +

(165/106)i, and r2 = 51/53 + (99/53)i. Stretching this example horizontally by

81514 + 81514i, we obtain the Z[i]-nice polynomial

p(x) = x2[x− (81514 + 81514i)]2[x− (−73824 + 230700i)]

· [x− (−119780 + 90100i)], (3.16)

p′(x) = 6x[x− (81514 + 81514i)][x− (−61520 + 192250i)]

· [x− (−81514 + 81514i)][x− (36040 + 47912i)].

Note that this sextic is not symmetric and is not equivalent to a nice polynomial.

Checking that this sextic is not symmetric is similar to checking that example (3.13)

is not symmetric. Since all nice sextics of this type are equivalent to Q-nice sextics

with double roots at 0 and 1 under only horizontal stretches and compressions and

reflections over the y-axis, if the polynomial (3.16) were equivalent to a nice or
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Q-nice polynomial, it would be equivalent to one with double roots at 0 and 1. But

the ratio of any two nonzero roots of (3.16) is nonreal, which is a contradiction.

Let D be an integral domain of characteristic 0. Given the type (m0,m1, m2, m3),

we now prove that there are only finitely many values of c2 where our formulas fail

to produce an example of a D-nice polynomial of this type. To find all such c2,

we check when r3 and c3 are 0, when r3 and c3 are undefined, when B and C are

undefined, when C = 0, when d
d−m2

− B = 0, when r3 = 1, when r2 is undefined,

when r2 = 0, when r2 = 1, and when r2 = r3. Since the solutions to many of

these equations are too complicated to write effectively, we decide instead in these

particular cases to argue that the equations do not reduce to 0 = 0. If all such

equations never reduce to 0 = 0, regardless of the choice of the multiplicities of the

roots, then it will follow that we may choose c2 so that all these cases where the

formulas fail to produce examples of D-nice polynomials with four distinct roots

can be avoided. Once we check these details, then the following result will follow.

Theorem 3.2. Let D be an integral domain of characteristic 0. Let m0, m1, m2,

and m3 be any four positive integers. Then there exists a D-nice polynomial of the

type (m0,m1,m2, m3) with four distinct roots.

Proof. We now check all the equations that we mentioned above. In checking most

of these equations, we often assume one or more of the variables are nonzero or that

the denominators in some of our expressions are nonzero. We may do so since these

separate cases where these assumptions do not hold do not lead us to cases where

the equation we are checking has any additional solutions. Finally, we may assume

that c2 6= 0 throughout the proof since the value c2 = 0 is always excluded. To

begin, first note that r3 and c3 are 0 iff c2 = d−m1
d .

Next note that the denominators in (3.10) and (3.11) are 0 iff m0d−d2c2+dm2c2+

dm3c2−m2m3c2 = 0 iff c2 = m0d
d2−dm2−dm3+m2m3

. Furthermore, the denominators in

B and C are 0 iff d−m1−m2+(d−m2−m3)r3 = 0. We may assume the denominator

in r3 is nonzero, so we substitute (3.10) for r3 and clear denominators to rewrite

the equation as (d−m1−m2)(m0d−d2c2+dm2c2+dm3c2−m2m3c2)+c2(d−m2−
m3)(m2− d)(m1 + dc2− d) = 0. This equation is of the form A2c

2
2 +A1c2 +A0 = 0

with A0 = m0d
2 −m0m1d −m0m2d = dm0(m0 + m3) 6= 0, so this equation does

not reduce to 0 = 0.

We now check when C = 0. The equation C = 0 is dc2c3 +(m1 +m3− d)r3 = 0.

Substitute (3.10) and (3.11) for r3 and c3 and clear denominators (we may assume

the denominators are nonzero) to rewrite the equation as −m0dc2(m1 + dc2 − d) +
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c2(m1 + m3 − d)(m2 − d)(m1 + dc2 − d) = 0. Since we may assume r3, c3 6= 0 (so

we assume m1 + dc2 − d 6= 0) and since we may assume c2 6= 0, we may cancel

c2(m1+dc2−d), so our equation is now −m0d+(m1+m3−d)(m2−d) = 0. We now

use d = m0+m1+m2+m3 to rewrite this equation as−m0d−(m0+m2)(m2−d) = 0,

which we can further rewrite as m2(m1 + m3) = 0 by expanding the left-hand side

and using the definition of d again. But this equation is a contradiction since D has

characteristic 0, so C 6= 0 iff c2 6= 0 and c2 is chosen so that r3 and c3 are nonzero

and defined.

We now check the equation d
d−m2

− B = 0. Substitute the value for B into

this equation. Assuming B has a nonzero denominator (which we may do so) and

noting that d 6= 0, we clear denominators and cancel d from both sides to rewrite

the equation as d−m1−m2 +(d−m2−m3)r3−(d−m2)(c2 +c3) = 0. Substituting

(3.10) and (3.11) for r3 and c3 and assuming the denominator is nonzero (we may

do so), we then clear denominators and cancel c2 from both sides to write the

equation as (d −m1 −m2)(m0d − d2c2 + dm2c2 + dm3c2 −m2m3c2) + (d −m2 −
m3)(m1 − d)(m1 + dc2 − d)− (d−m2)(m0d− d2c2 + dm2c2 + dm3c2 −m2m3c2) +

m0(d−m2)(dc2 +m1−d) = 0. We now check that this equation does not reduce to

0 = 0 by noting that this equation can be written in the form B2c
2
2 +B1c2 +B0 = 0

where B0 = −m0m1m2 6= 0.

The equation r3 = 1 does not reduce to 0 = 0. To see this, note that r3 = 1 iff

c2(m2 − d)(m1 + dc2 − d) = m0d − d2c2 + dm2c2 + dm3c2 −m2m3c2, which is of

the form D2c
2
2 + D1c2 + D0 = 0 where D0 = m0d 6= 0.

By (3.9), r2 is undefined iff r3 = 0 (with this equation considered earlier). And

r2 6= 0 iff c1, c2, and c3 are nonzero. But the equations c1 6= 0 and c3 6= 0 are

equivalent to equations we checked earlier.

The last two equations require much more work to check than the previous

equations had required. Before checking these equations, we write r2 in terms of

c2, the degree of p(x), and the multiplicities of the roots of p(x). If we do so, then

we have

r2 =
c2(dc2 −m0 −m2 −m3)(m1 + m3)

m0m1c2 −m2
3c2 −m0m3c2 + m0m3c2

2 + m1m3c2
2 + m2

1c2 −m0m1 + m2
3c

2
2

.

(3.17)

We used Maple 10 to do this directly since the details are too complicated to

present effectively and efficiently. We now start with the simpler equation, r2 = 1.

By (3.17), this equation is c2(dc2 −m0 −m2 −m3)(m1 + m3) = m0m1c2 −m2
3c2 −

m0m3c2 + m0m3c
2
2 + m1m3c

2
2 + m2

1c2 − m0m1 + m2
3c

2
2. This equation does not
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reduce to 0 = 0 since this equation is of the form E2c
2
2 + E1c2 + E0 = 0 where

E0 = m0m1 6= 0.

To complete the proof, we need to check that the equation r2 = r3 does not

reduce to 0 = 0. Setting (3.10) and (3.17) equal, cancelling c2 from both sides,

and cross-multiplying, we write the equation as (m0d − d2c2 + dm2c2 + dm3c2 −
m2m3c2)(dc2 − m0 − m2 − m3)(m1 + m3) = (m2 − d)(m1 + dc2 − d)(m0m1c2 −
m2

3c2 −m0m3c2 + m0m3c
2
2 + m1m3c

2
2 + m2

1c2 −m0m1 + m2
3c

2
2). This equation is

of the form F3c
3
2 + F2c

2
2 + F1c2 + F0 = 0 where F3 = dm3(d −m2)2 6= 0, so this

equation does not reduce to 0 = 0, as we wished to show. This check completes the

proof of Theorem 3.2. ¤

Most of the proof of Theorem 3.2 extends to the case where D has characteristic

p > 0. Note that all the equations we have checked cause no problems here except

the equation C = 0, the equation where the denominators in (3.10) and (3.11)

are 0, and the equation r2 = r3. When we had checked the equation C = 0, we

had said this equation does not reduce to 0 = 0 since m2(m1 + m3) 6= 0. For

such D, this is nonzero iff m1 6= −m3 mod p. When we checked the equation

where the denominators in (3.10) and (3.11) are 0, we earlier had said that this

equation does not reduce to 0 = 0 since dm0(m0 + m3) 6= 0. For such D, this is

nonzero iff m0 6= −m3 mod p. Finally, when we checked the equation r2 = r3, we

argued that the equation does not reduce to 0 = 0 since dm3(d −m2)2 6= 0. But,

for such D, this is nonzero iff d 6= m2 mod p. Thus, with these three additional

assumptions, the argument above continues to hold if D is an infinite integral

domain of characteristic p > 0 or if D is a finite field that is not “too small.” More

precisely, if the number of values of c2 ∈ D for which our formulas fail is less than

|D|, then we can construct D-nice polynomials with four distinct roots using our

formulas; otherwise, we cannot. For example, the total number of such values of

c2 ∈ D is at most 13. Thus, if D has more than 13 elements, we can find such

a D-nice polynomial with our formulas. If D has 13 or fewer elements, it is still

possible in some cases to construct such D-nice polynomials with our formulas. The

same can be said if one or more of our three assumptions do not hold. But stating

all the conditions in which we may do so cannot be done effectively; therefore, for

simplicity, we choose not to state all these conditions.

Our comments lead to the following theorem.

Theorem 3.3. Let D be an integral domain of characteristic p > 0. Let m0, m1,

m2, m3, and d = m0 +m1 +m2 +m3 be any positive integers that are not multiples
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of p and further assume that m1 6= −m3 mod p, m0 6= −m3 mod p, and d 6= m2

mod p. If D has more than 13 elements, then there exists a D-nice polynomial of

the type (m0,m1,m2,m3).

Paper [7] proves that the number of equivalence classes of all types of nice poly-

nomials with three roots is infinite and that papers [8] and [10] prove the analogous

results for D-nice symmetric polynomials over infinite integral domains. Further-

more, in Section 4 of this paper, in all cases where we can count all equivalence

classes of D-nice polynomials and D is infinite, the number of equivalence classes

is infinite. These results suggest the following conjecture.

Conjecture 3.4. Suppose D is an infinite integral domain of characteristic p ≥ 0.

Then the number of equivalence classes of all types of D-nice polynomials p(x) with

four roots where the degree of p(x) is not a multiple of p is infinite.

Application. Although (3.1)-(3.3) has not been completely solved, these relations

can help us program a computer to search for examples of such D-nice polynomials,

especially for examples in D = Z or D = Z/(p) for a prime p. Computer searches

for such Z/(p)-nice polynomials with four roots have revealed that no Z/(p)-nice

nonsymmetric quartics with four distinct roots exist when p < 23. Searching for

examples with a computer and counting equivalence classes has revealed that all

Z/(23)-nice nonsymmetric quartics are equivalent to

p(x) = x(x− 1)(x− 4)(x− 6),

p′(x) = 4(x− 17)(x− 13)(x− 7).

Searching for examples with a computer and counting equivalence classes has re-

vealed that all Z/(29)-nice nonsymmetric quartics are equivalent to

p(x) = x(x− 1)(x− 2)(x− 6),

p′(x) = 4(x− 27)(x− 23)(x− 22).

The details of these facts and the details of other computer searches for Z/(p)-nice

polynomials with four roots will later be written as a separate paper and submitted

for publication.

4. D-Nice Polynomials p(x) with Four Roots Where the Degree of p(x)

Is a Multiple of p

Let D be an integral domain of characteristic p > 0. We now consider the case

where the degree d of p(x) = xm0(x − r1)m1(x − r2)m2(x − r3)m3 is a multiple of
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p. In this case, the degree of p′(x) is d− 2 or less, so Lemma 3.1 does not apply to

such p(x). For such p(x), p′(x) = xm0−1(x− r1)m1−1(x− r2)m2−1(x− r3)m3−1q(x)

where q(x) = (m1r1 + m2r2 + m3r3)x2 + [(m0 + m3)r1r2 + (m0 + m2)r1r3 + (m0 +

m1)r2r3]x − m0r1r2r3. The degree of q(x) determines the degree of p′(x). We

summarize these important details in the following proposition. Since the proof is

easy, we omit it.

Proposition 4.1. Let D be an integral domain of characteristic p > 0 with field

of fractions QF(D). Suppose (m0,m1,m2,m3) is a type where none of the mul-

tiplicities are multiples of p but that d = m0 + m1 + m2 + m3 is. Let p(x) =

xm0(x− r1)m1(x− r2)m2(x− r3)m3 . Then the following results hold:

(a) p′(x) has degree d− 2 iff m1r1 + m2r2 + m3r3 6= 0. This nonzero number is

the leading coefficient of p′(x).

(b) p′(x) has degree d− 3 iff m1r1 + m2r2 + m3r3 = 0 and

(m0 +m3)r1r2 +(m0 +m2)r1r3 +(m0 +m1)r2r3 6= 0. This nonzero number

is the leading coefficient of p′(x). Furthermore, in this case, p(x) is QF(D)-

nice iff p(x) splits in QF (D)[x].

(c) p′(x) has degree d− 4 iff m1r1 + m2r2 + m3r3 = 0 and

(m0+m3)r1r2+(m0+m2)r1r3+(m0+m1)r2r3 = 0. The leading coefficient

of p′(x) is −m0r1r2r3. In this case, p(x) is D-nice iff p(x) splits in D[x].

If p(x) is a polynomial as described by Proposition 4.1 but m1r1+m2r2+m3r3 6=
0 and p(x) splits in QF(D)[x], then p(x) need not be QF(D)-nice since q(x) has

degree 2. In this case, we derive the relations between the roots and critical points

of such polynomials p(x). Though these relations follow directly from [9, Theorem

3.4], we derive these relations directly without using this theorem since [9] has not

yet been accepted for publication and so that the reader may see how these relations

are derived. We will use Lemma 4.2 later to derive formulas for constructing some

examples of these types of D-nice polynomials.

Lemma 4.2. Let D be an integral domain of characteristic p > 0. Suppose m0,

m1, m2, and m3 are not multiples of p but that d = m0 + m1 + m2 + m3 is, and let

p(x) = xm0(x−r1)m1(x−r2)m2(x−r3)m3 ∈ D[x]. Assume m1r1+m2r2+m3r3 6= 0

so that p′(x) = (m1r1+m2r2+m3r3)xm0−1(x−r1)m1−1(x−r2)m2−1(x−r3)m3−1(x−
c1)(x−c2) has degree d−2. Then p(x) with four roots in D is D-nice iff there exist
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c1 and c2 in D so that

(m0 + m3)r1r2 + (m0 + m2)r1r3 + (m0 + m1)r2r3 =

− (m1r1 + m2r2 + m3r3)(c1 + c2), (4.1)

m0r1r2r3 = −(m1r1 + m2r2 + m3r3)c1c2. (4.2)

Proof. If p(x) is as above, then p′(x) = xm0−1(x− r1)m1−1(x− r2)m2−1 ·
(x− r3)m3−1q(x) where q(x) = (m1r1 + m2r2 + m3r3)(x− c1)(x− c2) since q(x) is

quadratic. As mentioned above, this q(x) is equal to (m1r1 + m2r2 + m3r3)x2 +

[(m0 + m3)r1r2 + (m0 + m2)r1r3 + (m0 + m1)r2r3]x−m0r1r2r3 as well. Equating

coefficients of both forms of q(x) gives us (4.1)-(4.2). ¤

In Section 4.1, we count equivalence classes of D-nice polynomials p(x) of degree

d with four distinct roots where the degree of p′(x) is d − 3 or d − 4 and where

the characteristic of D is p > 2. In Section 4.2, we derive a formula for construct-

ing D-nice polynomials p(x) with four distinct roots over integral domains D of

characteristic 2. We also count equivalence classes of certain types of such p(x).

In Section 4.3, we derive a formula for constructing D-nice polynomials of degree

d with four distinct roots over integral domains D of characteristic 3 where the

degree of p′(x) is d− 2. We also count equivalence classes of these types of D-nice

polynomials. The cases where p′(x) has degree d−2 and D has characteristic p > 3

are unsolved since solutions to (4.1)-(4.2) in integral domains D of characteristic

p > 3 are unknown (see Problem 5.4).

4.1. Case 1: p′(x) Has Degree d − 3 or d − 4. For p(x) as described above,

p′(x) has degree d − 3 or d − 4 iff m1r1 + m2r2 + m3r3 = 0. By Proposition

4.1 this p(x) is QF(D)-nice iff p(x) splits in QF(D)[x]. Thus, we can construct all

examples of such D-nice polynomials and count equivalence classes without deriving

formulas. To count equivalence classes of D-nice polynomials p(x) of degree d with

four roots where the degree of p′(x) is either d− 3 or d− 4, we construct a set S of

representatives of all the equivalence classes. Although S may contain some QF(D)-

nice polynomials, S can be used to count equivalence classes of D-nice polynomials

since any two equivalent D-nice polynomials are equivalent to the same QF(D)-nice

polynomial, and any two equivalent QF(D)-nice polynomials are equivalent to the

same D-nice polynomial.

We may assume r1 = 1 since, by horizontal compressions, all D-nice polynomials

are equivalent to QF(D)-nice polynomials with r1 = 1. For such p(x) = xm0(x −
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1)m1(x−r2)m2(x−r3)m3 , the degree of p′(x) is d−3 or d−4 iff m1+m2r2+m3r3 = 0

iff r3 = −m1−m2r2
m3

where r2 is any element in QF(D). We determine when one or

both of r2 and r3 are 0, 1, or equal to each other since in these cases (and only

these) p(x) does not have four distinct roots. Note that r3 is 0 iff −m1−m2r2 = 0

iff r2 = −m1
m2

( 6= 0). This choice of r2 is not 1 iff m1 6= −m2 in D. And r3 is

1 iff −m1 − m2r2 = m3 iff r2 = −(m1+m3)
m2

( 6= 1). This value of r2 is nonzero iff

m1 6= −m3 in D. Finally, note that r3 = r2 iff r2 = −m1−m2r2
m3

iff r2 = −m1
m2+m3

and

m2 6= −m3 in D (if m2 = −m3 in D, then it is easy to check that r3 is never equal

to r2). This particular value of r2 is neither 0 nor 1. These results are summarized

below.

Lemma 4.3. Suppose m1 + m2r2 + m3r3 = 0.

(a) If r2 = −m1
m2

, then r3 = 0. This choice of r2 is never 0 and is not equal to

1 iff m1 6= −m2 mod p.

(b) If r2 = −(m1+m3)
m2

, then r3 = 1. This choice of r2 is never equal to 1 and is

not equal to 0 iff m1 6= −m3 mod p.

(c) If r2 = −m1
m2+m3

, then r2 = r3. This choice of r2 is never equal to 0 or 1. If

m2 = −m3 mod p, then r2 and r3 are never equal.

In all other cases, r2 and r3 are neither 0 nor 1 and are distinct.

Remark. To simplify the following results and proofs, we shall not consider all the

different cases where the set A = {0, 1, −m1
m2

, −(m1+m3)
m2

, −m1
m2+m3

} consists of 5, 4, or

3 elements. Instead, we combine all these cases and then use |A| instead.

We look first at the case where the four multiplicities are all distinct mod p since

this case is the simplest. Note that in this case the characteristic of D is p > 3.

Corollary 4.4. Let D be an integral domain of characteristic p > 3. Let m0, m1,

m2, and m3 be distinct mod p and d = m0 + m1 + m2 + m3 a multiple of p. Let

A = {0, 1, −m1
m2

, −(m1+m3)
m2

, −m1
m2+m3

}. Then the number of equivalence classes of D-

nice polynomials of the type (m0,m1,m2,m3) whose derivatives are of degree d− 3

or d− 4 is pn − |A| if D has pn elements and is infinite if D is infinite.

Proof. Let S = {pa,b(x) = xm0(x− 1)m1(x− a)m2(x− b)m3 : m1 + m2a + m3b =

0, pa,b(x) has four distinct roots}. It is easy to see that any D-nice polynomial of

these types is equivalent to a polynomial in S. Furthermore, any two polynomials

in S are equivalent iff they are equal since all the multiplicities are distinct mod p.

Thus, S is a set of representatives of the equivalence classes of D-nice polynomials of
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these types. By Lemma 4.3, if r2 /∈ A, there exists a unique r3 so that pr2,r3(x) ∈ S;

and if r2 ∈ A, then there is no such r3. Since pa,b(x) 6= pb,a(x), it then follows that

the number of equivalence classes is as stated. ¤

We now consider the case where the set of multiplicities consists of three distinct

numbers mod p. Without loss of generality, we may assume m0 6= m1 mod p and

that both of these numbers are different from m2 = m3 = m mod p. Again the

characteristic of D is p > 3.

Corollary 4.5. Let D be an integral domain of characteristic p > 3. Let m0 6= m1

mod p and both be different mod p from m2 = m3 = m mod p, and let d = m0 +

m1 +m2 +m3 be a multiple of p. Let A = {0, 1, −m1
m2

, −(m1+m3)
m2

, −m1
m2+m3

}. Then the

number of equivalence classes of D-nice polynomials of the type (m0,m1,m2,m3)

whose derivatives are of degree d− 3 or d− 4 is 1
2 (pn − |A|) if D has pn elements

and is infinite if D is infinite.

Proof. We may assume that m2 = m3 = m, and we use the same argument used

in the proof of Corollary 4.4 but now noting that, since pa,b(x) = pb,a(x) ∈ S, every

polynomial in S is counted twice. ¤

We now consider the two cases where the set of multiplicities consists of two

distinct numbers mod p. In one case, we may assume m0 = m1 = m mod p,

m2 = m3 = m′ mod p, and m 6= m′ mod p. In this case, the characteristic of D is

p > 2. In the other case, we may assume m0 is different from m1 = m2 = m3 = m

mod p. In this case, the characteristic of D is p > 3.

Corollary 4.6. Let D be an integral domain of characteristic p > 2. Let m0 =

m1 = m mod p and m2 = m3 = m′ mod p where m 6= m′ mod p. Suppose d = m0 +

m1 +m2 +m3 is a multiple of p. Let A = {0, 1, −m1
m2

, −(m1+m3)
m2

, −m1
m2+m3

}. Then the

number of equivalence classes of D-nice polynomials of the type (m0,m1,m2,m3)

whose derivatives are of degree d− 3 or d− 4 is 1
2 (pn − |A|) if D has pn elements

and is infinite if D is infinite.

Proof. We may assume m0 = m1 = m, m2 = m3 = m′, and m 6= m′. Let S be

the same set S as stated above. Since pa,b(x) = pb,a(x) ∈ S, S has 1
2 (pn − |A|)

polynomials if D has pn elements. However, under a horizontal translation by 1

and a reflection over the y-axis, pa,b(x) is equivalent to p1−a,1−b(x) ∈ S but to no

other polynomials in S. We claim that these two polynomials are actually equal,

so our claim implies that the number of equivalence classes equals the number of
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polynomials in S. To see the claim, we note that the roots of any polynomial in S

satisfy m + m′(a + b) = 0, which holds iff a + b = −m/m′ = 1 since m + m′ = 0 in

D. For all such pairs of roots a and b, a + b = 1; therefore, a = 1− b and b = 1− a.

This proves our result. ¤

Before we consider the other case m1 = m2 = m3 = m mod p and m0 6= m mod

p, we prove the following lemma we will use in counting equivalence classes. In both

the lemma below and in Corollary 4.8, we call the cube roots of unity different from

1 the nontrivial cube roots of unity.

Lemma 4.7. Let D be an integral domain of characteristic p > 3. Suppose m1 =

m2 = m3 = m mod p and m0 6= m mod p. Let S∗ = {pa,b(x) = xm0(x − a)m(x −
b)m(x−1)m : a+ b+1 = 0, pa,b(x) is D-nice}. Let a1, a2 denote the nontrivial cube

roots of unity.

(a) If a1, a2 ∈ D, then pa1,a2(x) ∈ S∗. The polynomial pa1,a2(x) ∈ S∗ is not

equivalent to any other polynomial in S∗.

(b) Every polynomial pa,b(x) ∈ S∗ different from pa1,a2(x) is equivalent to ex-

actly two other polynomials in S∗.

Proof. (a). To prove this, we need to prove that a1+a2+1 = 0. Both a1 and a2 are

roots of the polynomial x3− 1, which factors as (x− 1)(x2 + x + 1). Neither a1 nor

a2 is 1, so both a1 and a2 are roots of x2+x+1. Thus, a2
1+a2

2+a1+a2+2 = 0. But

a2
1 = a2 and a2

2 = a1 since both a1 and a2 are generators of the unique subgroup

of order 3 of D∗, the multiplicative group of D. This equation then becomes

2a1 + 2a2 + 2 = 0, so a1 + a2 + 1 = 0, as needed.

Since pa,b(x) is monic and m0 6= m, pa,b(x) is equivalent to both p1/a,b/a(x) and

p1/b,a/b(x) under horizontal compressions and to no other polynomials in S∗. Since

a1 and a2 are the only elements of order 3 in D∗ and since 1/a1 has order 3, 1/a1 =

a2. Thus, a1 and a2 are multiplicative inverses. Then it follows that a3
1 = 1 = a1a2,

so a2
1 = a2 and a1a2 = 1. Hence, a1 = a2/a1 and a2 = 1/a1, which shows that

pa1,a2(x) = p1/a1,a2/a1(x). By similar reasoning, pa1,a2(x) = pa1/a2,1/a2(x). We

then conclude that pa1,a2(x) ∈ S∗ is not equivalent to any other polynomials in S∗.

(b). We may reverse the steps above to prove that pa,b(x), p1/a,b/a(x), and

p1/b,a/b(x) are all distinct in this case. This completes the proof. ¤

Corollary 4.8. Let D be an integral domain of characteristic p > 3. Let m0 be

different mod p from m1 = m2 = m3 = m mod p, and suppose d = m0 + m1 +
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m2 + m3 is a multiple of p. Let A = {0, 1, −m1
m2

, −(m1+m3)
m2

, −m1
m2+m3

}. Then the

number of equivalence classes of D-nice polynomials of the type (m0,m1,m2,m3)

whose derivatives are of degree d− 3 or d− 4 is 1
3 [ 12 (pn − |A|)− 1] + 1 if D has pn

elements and contains both nontrivial cube roots of unity and is 1
6 (pn − |A|) if D

has pn elements and contains no nontrivial cube roots of unity and is infinite if D

is infinite.

Proof. We may assume m1 = m2 = m3 = m and m0 6= m. Let S∗ be the same

set as described by Lemma 4.7. Let a1 and a2 be the nontrivial cube roots of

unity. By Lemma 4.7, pa,b(x) is equivalent to exactly two other polynomials in S∗

if pa,b(x) 6= pa1,a2(x). But pa1,a2(x) is not equivalent to any other polynomial in

S∗. If a1, a2 ∈ D, we form the set S of representatives of the equivalence classes by

keeping 1/3 of all the polynomials in S∗ − {pa1,a2(x)} then adding pa1,a2(x) to S

to complete the set of representatives. If a1, a2 /∈ D, then to form S, we keep 1/3

of the polynomials in S∗. Then it follows by this construction that the number of

equivalence classes is the number stated above. ¤

4.2. Case 2: D Has Characteristic 2. We now look at the case where D

has characteristic 2 and the degree of p(x) is even. By our assumptions, all the

multiplicities of the roots of p(x) are odd. If D is a finite field of characteristic

2, then we do not need a formula for constructing such D-nice polynomials p(x),

regardless of what the degree of p′(x) is. We now prove this below.

Proposition 4.9. Suppose D is a finite field of characteristic 2. Let m0, m1, m2,

and m3 all be odd. Then p(x) = xm0(x − r1)m1(x − r2)m2(x − r3)m3 ∈ D[x] is

D-nice iff p(x) splits in D[x].

Proof. Note that p′(x) = xm0−1(x− r1)m1−1(x− r2)m2−1(x− r3)m3−1 ·
[(r1 + r2 + r3)x2 + r1r2r3], which splits in D[x] since p′(x) 6= 0 and the Frobenius

homomorphism y 7→ y2 is an automorphism. ¤

By the proof of Proposition 4.9, p′(x) has degree d−2 or d−4, and this degree is

d−4 iff r1+r2+r3 = 0. Furthermore, the conclusion of Proposition 4.9 holds if p′(x)

has degree d−4 and D is infinite but does not hold if p′(x) has degree d−2 and D is

infinite. To see that the former holds, note that p′(x) = r1r2r3x
m0−1(x− r1)m1−1 ·

(x − r2)m2−1(x − r3)m3−1 in this case. For convenience, we state this result in

Proposition 4.10 below. To see that the latter holds, take D = Z/(2)(y), the field

of rational functions over Z/(2). Then p(x) = x(x−1)[x− (y2 +y)][x− (y3 +y+1)]
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splits in D[x], but p′(x) = (y3 + y2)x2 + (y5 + y4 + y3 + y) does not split in D[x].

It is easy to see that the only elements in D that that have square roots in D are

those rational functions in reduced form where the only powers of y are even. Since

the rational function y5+y4+y3+y
y3+y2 in reduced form is y3+1

y , it does not have a square

root in D. Thus, p′(x) does not split in D[x].

Proposition 4.10. Suppose D is an infinite integral domain of characteristic 2.

Let m0, m1, m2, and m3 all be odd. Then p(x) = xm0(x − r1)m1(x − r2)m2(x −
r3)m3 ∈ D[x] with r1 + r2 + r3 = 0 is D-nice iff p(x) splits in D[x].

Remark. Proposition 4.9 implies Proposition 4.10 whenever D is finite; so, to

avoid redundancy, we choose to assume D is infinite in Proposition 4.10.

We now derive a formula for constructing D-nice polynomials p(x) of degree d

with four roots over integral domains D of characteristic 2 where all four roots

have odd multiplicities and the degree of p′(x) is d − 2. In this case, the relations

(4.1)-(4.2) simplify as follows:

r1r2r3 = (r1 + r2 + r3)c2. (4.3)

To see this, note that (4.1) becomes (r1 + r2 + r3)(c1 + c2) = 0, so c1 + c2 = 0 since

r1 + r2 + r3 6= 0. Thus, c1 = c2 = c. Substitution into (4.2) gives (4.3) above.

We now solve (4.3) in QF(D) to derive a formula for constructing D-nice poly-

nomials p(x) of degree d over (infinite) integral domains D of characteristic 2 where

the multiplicities of the four roots of p(x) are odd and where p′(x) has degree d−2.

We must assume r1 + r2 + r3 6= 0; otherwise, (4.3) does not hold. By Theorem 2.1,

we may assume these multiplicities are all 1 and that p(x) has degree 4.

Theorem 4.11. Let D be an infinite integral domain of characteristic 2. Then

the polynomial p(x) = x(x− r1)(x− r2)(x− r3) with derivative p′(x) = (r1 + r2 +

r3)(x− c)2 6= 0 is QF(D)-nice and has four distinct roots iff

r1 =
(r2 + r3)c2

r2r3 + c2
(4.4)

for some r2, r3, and c that are nonzero and all distinct and where r2r3 6= c2.

Proof. Rewrite (4.3) as r1r2r3+r1c
2 = (r2+r3)c2 and solve for r1. We check when

r1 + r2 + r3 6= 0. By (4.3), if c, r1, r2, and r3 are nonzero, then r1 + r2 + r3 6= 0.

We check below that our choices of r2, r3, and c guarantee that all variables are

nonzero; then, it will follow that r1 + r2 + r3 6= 0 for our choices of r2, r3, and c.
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If r2r3 = c2, then (4.3) becomes r1c
2 = (r1 + r2 + r3)c2, so r1 = r1 + r2 + r3

(since c 6= 0), which implies that r2 = r3. Thus, in this case, p(x) does not have

four distinct roots. And r1 = r2 iff r2
2r3 + r2c

2 = r2c
2 + r3c

2 (by the formula)

iff r2
2r3 = r3c

2 iff r2
2 = c2 iff r2 = c. By similar reasoning, r1 = r3 iff r3 = c.

Combining these facts, we see that (4.3) has a solution where r1, r2, and r3 are all

nonzero and distinct iff r2r3 6= c2 and r2, r3, and c are all nonzero and distinct.

The converse of the theorem follows from Lemma 4.2. ¤

Remark. Because (4.3) holds if D is finite, Theorem 4.11 holds whenever D is

finite, but we do not need to use formula (4.4) in this case. Since Theorem 4.11 is

useful only when D is infinite, we assume D is infinite in this theorem.

We illustrate formula (4.4) with the following two examples of D-nice polynomi-

als.

Let D = Z/(2)[y]. Choose r2 = y + 1, r3 = y3 + y2 + 1, and c = y3 + y. Then,

by formula (4.4), r1 = y9+y8+y7+y5+y4+y3

y6+y4+y+1 . Stretching this polynomial horizontally

by y6 + y4 + y + 1, we obtain the equivalent D-nice polynomial

p(x) = x[x− (y9 + y8 + y7 + y5 + y4 + y3)][x− (y7 + y6 + y5 + y4 + y2 + 1)]

· [x− (y9 + y8 + y7 + y2 + y + 1)], (4.5)

p′(x) = (y7 + y6 + y3 + y)[x− (y9 + y5 + y4 + y3 + y2 + y)]2.

Let D = Z/(2)[y]. Choose r2 = y, r3 = y2 +y +1, and c = y3. Then, by formula

(4.4), r1 = y8+y6

y6+y3+y2+y . Stretching this polynomial horizontally by y6 +y3 +y2 +y,

we obtain the equivalent D-nice polynomial

p(x) = x[x− (y8 + y6)][x− (y7 + y4 + y3 + y2)]

· [x− (y8 + y7 + y6 + y5 + y3 + y)], (4.6)

p′(x) = (y5 + y4 + y2 + y)[x− (y9 + y6 + y5 + y4)]2.

Counting equivalence classes of D-nice polynomials p(x) over finite fields of char-

acteristic 2 where all four multiplicities of the roots of p(x) are odd is currently an

unsolved problem (see Problem 5.3). Every such D-nice polynomial p(x) is equiv-

alent to a polynomial in S∗ = {pa,b(x) = x(x− 1)(x− a)(x− b) : pa,b(x) is D-nice

and has four distinct roots}. Counting these equivalence classes is difficult because

determining when two polynomials in S∗ are equivalent is a difficult problem. Even

though every such D-nice polynomial is equivalent to a polynomial in S∗, two poly-

nomials in S∗ can be equivalent under a horizontal translation (by either 1, a, or b),
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under a horizontal stretch or compression (by either a or b), or under compositions

of these transformations. However, if D is infinite, then it is easy to check that the

number of equivalence classes is infinite.

Corollary 4.12. Let D be an infinite integral domain of characteristic 2. Let m0,

m1, m2, and m3 all be odd. Then the number of D-nice polynomials of the type

(m0, m1, m2, m3) is infinite.

Proof. Let S∗ be the same set mentioned above. By Proposition 4.10 and Theorem

4.11, S∗ is infinite. By the discussion above, every polynomial in S∗ is equivalent

to finitely many other polynomials in S∗, so the result follows. ¤

4.3. Case 3: p′(x) Has Degree d− 2 and D Has Characteristic 3. We now

find a formula for constructing D-nice polynomials p(x) with four roots over integral

domains D of characteristic 3 where the degree d of p(x) is a multiple of 3 and the

degree of p′(x) is d− 2. The only possibility is that two of the multiplicities of the

roots are 2 mod 3 and the other two are 1 mod 3. Without loss of generality, we

may assume m0 = m3 = 2 and m1 = m2 = 1. Using the horizontal compression,

we may assume r3 = 1. In this case, the relations (4.1)-(4.2) become

2r1r2 = (r1 + r2 + 2)(c1 + c2), (4.7)

r1r2 = (r1 + r2 + 2)c1c2. (4.8)

To find our formula for constructing such D-nice polynomials, we solve this

system of equations in QF(D) with the condition that r1+r2+2 6= 0. If r1+r2+2 =

0, then (4.7)-(4.8) do not hold.

Theorem 4.13. Let D be an integral domain of characteristic 3. The polynomial

p(x) = x2(x− r1)(x− r2)(x− 1)2 with derivative p′(x) = (r1 + r2 + 2)x(x− 1)(x−
c1)(x− c2) 6= 0 is QF(D)-nice iff there exist c2 6= 0 and r2 6= 0, 1 in QF(D) so that

c1 =
c2

2c2 − 1
, (4.9)

r1 =
r2c

2
2 + 2c2

2

2c2r2 − r2 − c2
2

(4.10)

where the denominators of (4.9) and (4.10) are nonzero.

Proof. We first proof that, for the given choices of r2 and c2 in the statement of

the theorem and the choice of r1 given by (4.10), r1 + r2 + 2 6= 0. By (4.7)-(4.8), if

r1 and r2 are nonzero, then r1 + r2 + 2 6= 0. We choose r2 6= 0, 1 and c2 6= 0; thus,

by (4.10), r1 6= 0. So r1 + r2 + 2 6= 0.
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By (4.7)-(4.8), if p(x) has four distinct roots, neither c1c2 nor c1+c2 are 0 and, by

(4.7), 2r1r2
c1+c2

= r1r2
c1c2

. Furthermore, r1r2 6= 0; so, by canceling, 2
c1+c2

= 1
c1c2

. Solving

this equation for c2 in terms of c1, assuming c2 6= −1, we obtain (4.9). If c2 = −1,

then the equation we just solved has no solution. Now we solve (4.8) for r1 in terms

of r2, c1, and c2. We rewrite the equation as r1(r2 − c1c2) = r2c1c2 + 2c1c2 and

divide, assuming r2 6= c1c2, which gives us r1 = r2c1c2+2c1c2
r2−c1c2

. Note that if r2 = c1c2,

then, by (4.8), r1 +r2 +2 = r1, which implies that r2 = −2 = 1, which is impossible

if p(x) has four distinct roots. Substituting (4.9) for c1 into the expression for r1

leads to (4.10) above.

The converse follows from Lemma 4.2. ¤

Remark. The method of solving (4.7)-(4.8) in the proof above does not extend to

solving (4.1)-(4.2) in general. However, it is not difficult to see that this method

can be generalized to the case where m0 +m2 is a multiple of p. But we choose not

to do that here since it is not clear right now if such a formula would be of interest.

We now illustrate formulas (4.9)-(4.10) with several examples of D-nice polyno-

mials.

Let D = Z/(3)[y]. Let r2 = 2y2 + y + 1 and c2 = y3 + 2y + 2. Then, by the

formulas, r1 = 2y8+y7+2y6+2y3+y2+y
2y6+y5+y4+2y+2 and c1 = y3+2y+2

2y3+y . Stretching this horizontally

by (2y3 + y)(2y6 + y5 + y4 + 2y + 2), we obtain the equivalent D-nice polynomial

p(x) = x2(x− r1)(x− r2)(x− r3)2, (4.11)

p′(x) = (y10 + y9 + y8 + 2y7 + y6 + 2y5 + y3)x(x− r3)(x− c1)(x− c2)

where r1 = y11 + 2y10 + y8 + 2y7 + y6 + 2y5 + y4 + y3 + y2,

r2 = 2y11 + 2y10 + 2y9 + 2y8 + y7 + y6 + y5 + y3 + y2 + 2y,

r3 = y9 + 2y8 + y7 + y6 + y5 + y4 + y3 + 2y2 + 2y,

c1 = 2y9 + y8 + 2y7 + y5 + y4 + 2y3 + y2 + 2y + 1, and

c2 = y12 + 2y11 + y9 + y8 + 2y7 + 2y6 + 2y2 + y.

Let D = Z/(3)[y]/(f) where f(y) = y2 +1 is irreducible in Z/(3)[y]. To simplify

notation, we denote g(y) + (f) ∈ D by g(t). Choose r2 = 2t + 1 and c2 = t. Then,

by the formulas, r1 = 2t and c1 = t + 1. Thus, our D-nice polynomial is

p(x) = x2(x− 2t)[x− (2t + 1)](x− 1)2, (4.12)

p′(x) = tx(x− 1)[x− (t + 1)](x− t).
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We now find all values of c2 and r2 where the formulas (4.9)-(4.10) give D-nice

polynomials with four distinct roots.

Proposition 4.14. Formulas (4.9)-(4.10) give D-nice polynomials with four dis-

tinct roots iff c2 6= 0,±1 and r2 6= c2, 0, 1,
c2
2

2c2−1 , −c2
c2−2 . These five values are all

distinct.

Proof. To find all values of r2 and c2 where the formulas fail to give D-nice polyno-

mials with four distinct roots, we consider the cases r1 is undefined, r1 = 0, r1 = 1,

and r1 = r2. The case where c1 is undefined iff c2 = −1 has been considered earlier.

These cases are all the cases where the formulas fail to give D-nice polynomials with

four distinct roots. Note that r1 is undefined iff 2c2r2 − r2 − c2
2 = 0 iff r2 = c2

2
2c2−1 .

Next, note that r1 = 0 iff r2c
2
2 +2c2

2 = 0 iff c2
2(r2 +2) = 0 iff c2 = 0 or r2 = 1. Next,

r1 = 1 iff r2c
2
2 + 2c2

2 = 2c2r2 − r2 − c2
2 iff r2(c2

2 − 2c2 + 1) = 0 iff r2 = 0 or c2 = 1.

Finally, r1 = r2 iff 2c2r
2
2 − r2

2 − c2
2r2 = r2c

2
2 + 2c2

2 iff (2c2 − 1)r2
2 + c2

2r2 + c2
2 = 0 iff

r2 = −c2
c2−2 or r2 = c2. Checking that these five values for r2 are all distinct when

c2 6= 0,±1 is not difficult, and we omit the details. ¤

We will use the following result when we count equivalence classes of D-nice

polynomials as described above. Since the result is important for studying D-nice

polynomials with a specified number of roots, we present this result for polynomials

with any number of roots over any integral domain D. In this result r being a root

of multiplicity 0 means that r is not a root.

Proposition 4.15. Suppose p(x) = a
∏

(x− ri)mi ∈ D[x] and ri 6= rj for i 6= j. If

D has characteristic 0, then ri is a root of multiplicity mi − 1 of p′(x). If D has

characteristic p > 0, then ri is a root of multiplicity mi − 1 of p′(x) if mi is not a

multiple of p. Otherwise, the multiplicity of the root ri of p′(x) is mi or greater.

Proof. Let p(x) = a(x − r1)m1(x − r2)m2 · · · (x − rn)mn . Differentiating p(x) by

the product rule, we see that p′(x) = a(x− r1)m1−1(x− r2)m2−1(x− rn)mn−1q(x)

where q(x) =
∑n

i=1 mi

∏
j 6=i(x − rj). Then q(ri) = mi

∏
j 6=i(ri − rj). If D has

characteristic 0 or if D has characteristic p > 0 and mi is not a multiple of p, then

mi 6= 0 in D. Thus, q(ri) 6= 0, which proves that ri is a root of p′(x) of multiplicity

mi−1. Otherwise, mi = 0 in D. Thus, q(ri) = 0, which proves that the multiplicity

of the root ri of p′(x) is mi or greater. ¤

We conclude Section 4 by counting equivalence classes of D-nice polynomials

p(x) as described in Theorem 4.13.
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Corollary 4.16. Let D be an integral domain of characteristic 3, and suppose

m0 = m3 = 2 mod 3 and m1 = m3 = 1 mod 3. Let d = m0 + m1 + m2 + m3.

Then the number of equivalence classes of D-nice polynomials p(x) of the type

(m0, m1, m2, m3) where p′(x) has degree d − 2 is 1
8 (3n − 3)(3n − 5) if D has 3n

(n ≥ 2) elements and is infinite if D is infinite.

Proof. We may assume m0 = m3 = 2 and m1 = m2 = 1. Let S∗ = {pa,b(x) =

x2(x− a)(x− b)(x− 1)2 : a, b 6= 0, 1; a 6= b, pa,b(x) is QF(D)-nice}. Every such D-

nice polynomial is equivalent to a polynomial in S∗. Under a horizontal translation

by 1 and a reflection over the y-axis, pa,b(x) is equivalent to p1−a,1−b(x) and to

no other polynomials in S∗. These two polynomials are never equal if pa,b(x) has

four distinct roots. To see this, note that these polynomials are equal iff 1− b = a

and 1 − a = b iff a + b + 2 = 0. However, a + b + 2 6= 0. Thus, every QF(D)-nice

polynomial pa,b(x) ∈ S∗ is equivalent to exactly one other polynomial in S∗, so

half of these form a set S of representatives of the equivalence classes of D-nice

polynomials of these types. It is easy to see that the number of equivalence classes

is infinite if D is.

By Proposition 4.14, for every c2 6= 0,±1, there are exactly five values of r2 so

that the polynomial constructed by formulas (4.9)-(4.10) fails to have four distinct

roots. Thus, if D has 3n (n ≥ 2) elements, there are (3n − 3)(3n − 5) choices of

ordered pairs (c2, r2) so that the polynomials constructed by the formulas have four

distinct roots. If we construct one polynomial by choosing c2 = a and r2 = b then

construct another by choosing c2 = b and r2 = a, then the two polynomials we

constructed, if they have four distinct roots, are different. If they were equal, then

this polynomial would have a single root a and a critical point a. But, by Propo-

sition 4.15, this is impossible, so the number of distinct polynomials constructed

by formulas (4.9)-(4.10) is the number of ordered pairs (c2, r2) if distinct choices of

ordered pairs give distinct polynomials. But this is not true since the multiplicities

of r1 and r2 are 1, and the multiplicities of c1 and c2 are also 1 (switching the labels

of r1 and r2 gives the same polynomial; switching the labels of c1 and c2 also gives

the same polynomial). It is easy to see that c1 and c2 are never equal since the

only solutions to the equation c1 = c2 using (4.9) for the value of c1 are c2 = 0 and

c2 = 1, which are values we exclude. And, by our choices of c2, r1 6= r2. Then it

follows that for any QF(D)-nice polynomial pa,b(x) there exist exactly four ordered

pairs (c2, r2) so that pa,b(x) is constructed by the formulas. Hence, the number of

distinct polynomials is 1
4 (3n − 3)(3n − 5) if D has 3n elements. Then we divide
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this number by 2 since every polynomial is equivalent to exactly one other, as we

showed above. This completes the proof. ¤

5. Open Problems

The following four problems about constructing, describing, and classifying D-nice

polynomials with four distinct roots remain unsolved.

Problem 5.1. Find a formula for constructing all D-nice polynomials with four

distinct roots over integral domains of characteristic 0 by solving relations (3.1)-

(3.3) in D. Use this formula to count equivalence classes of such D-nice polynomials.

In particular, prove or disprove Conjecture 3.4.

Problem 5.2. Let D be an integral domain of characteristic p > 0. Find a formula

for constructing all D-nice polynomials of the type (m0, m1, m2,m3) where none

of m0, m1, m2, m3, and d = m0 + m1 + m2 + m3 are multiples of p by solving

relations (3.1)-(3.3) in D. Use this formula to count equivalence classes of such

D-nice polynomials. In particular, prove or disprove Conjecture 3.4.

Problem 5.3. Determine the number of equivalence classes of D-nice polynomials

p(x) over finite fields of characteristic 2 where the four multiplicities of the roots of

p(x) are odd.

Problem 5.4. Let D be an integral domain of characteristic p > 3. Suppose m0,

m1, m2, and m3 are not multiples of p but that d = m0 + m1 + m2 + m3 is. Find a

formula for constructing all such D-nice polynomials by solving relations (4.1)-(4.2)

in D, and use this formula to count equivalence classes of such D-nice polynomials.
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