A FORMULA FOR REDUCTION NUMBER OF AN IDEAL RELATIVE TO A NOETHERIAN MODULE

Naser Zamani

Received: 18 July 2008; Revised: 7 October 2008 Communicated by Roger A. Wiegand

ABSTRACT. Let (A, \mathfrak{m}) be a Noetherian local ring with infinite residue field and E be a finitely generated d dimensional Cohen-Macaulay A-module. Let \mathfrak{b} be an ideal of A such that $\operatorname{ht}_E \mathfrak{b} = 0$ and $\lambda(\mathfrak{b}, E) = 1$. Assume that $\mathfrak{b}_{\mathfrak{p}} = 0$ for all $\mathfrak{p} \in \operatorname{Min}(E/\mathfrak{b}E)$. Let $r(\mathfrak{b}, E) > 0$. We show that if $G_{\mathfrak{b}}(E)$ is Cohen-Macaulay, then $r(\mathfrak{b}, E) = a(G_{\mathfrak{b}}(E)) + 1$.

Mathematics Subject Classification (2000): 13A30, 13A99, 13D45 Keywords: associated graded rings and modules, graded local cohomology, reduction number and analytic spread of an ideal relative to a module

1. Introduction

Let (A, \mathfrak{m}) be a Noetherian local ring with infinite residue field $k = A/\mathfrak{m}$ and let E be a d-dimensional finitely generated A-module. Let \mathfrak{b} be an ideal of A. An ideal $\mathfrak{a} \subseteq \mathfrak{b}$ is called a *reduction* of \mathfrak{b} relative to E if $\mathfrak{a}\mathfrak{b}^n E = \mathfrak{b}^{n+1}E$ for some nonegative integer n, (see [2, Definition 4.6.4]). We denote by $r_{\mathfrak{a}}(\mathfrak{b}, E)$ the least integer with this property. A reduction \mathfrak{a} of \mathfrak{b} relative to E is called a *minimal reduction* if it does not properly contain any other reduction of \mathfrak{b} relative to E. Since k is infinite it is well known that minimal reductions relative to E always exist; see [15, section 4] and [2, Proposition 4.5.8]. In this case we define the reduction number of \mathfrak{b} relative to E by

 $r(\mathfrak{b}, E) = \min\{r_{\mathfrak{a}}(\mathfrak{b}, E) : \mathfrak{a} \text{ is a minimal reduction of } \mathfrak{b} \text{ relative to } E\}.$

With E = A the correspondence definitions for ideals almost immediately yields; (see [11]). In this case we set $r(\mathfrak{b}) := r(\mathfrak{b}, A)$ and call it the reduction number of \mathfrak{b} . In order to state and prove our results we set up a few more notation. We denote by $R_{\mathfrak{b}}(E)$ (resp. by $G_{\mathfrak{b}}(E)$) the Rees module of E associated to \mathfrak{b} (resp. the associated graded module of E with respect to \mathfrak{b}), namely:

$$R_{\mathfrak{b}}(E) := \bigoplus_{n=0}^{\infty} \mathfrak{b}^{n} E \quad \text{and} \quad G_{\mathfrak{b}}(E) := \bigoplus_{n=0}^{\infty} \mathfrak{b}^{n} E / \mathfrak{b}^{n+1} E = R_{\mathfrak{b}}(E) / \mathfrak{b} R_{\mathfrak{b}}(E).$$

In the case E = A we denote it by $R(\mathfrak{b})$ (resp. by $G(\mathfrak{b})$) and call it the Rees algebra (resp. the associated graded ring) of \mathfrak{b} simply. Then both $R_{\mathfrak{b}}(E)$ and $G_{\mathfrak{b}}(E)$ are finitely generated graded $R(\mathfrak{b})$ -module. We denote by **m** the unique homogeneous maximal ideal of $R(\mathfrak{b})$, i.e., $\mathbf{m} := \mathfrak{m}R(\mathfrak{b}) + R(\mathfrak{b})_+$. Then following [2, Definition 4.5.7], the analytic spread of \mathfrak{b} relative to E is defined to be $\lambda(\mathfrak{b}, E) = \dim(R_{\mathfrak{b}}(E)/\mathfrak{m}R_{\mathfrak{b}}(E)) = \dim(G_{\mathfrak{b}}(E)/\mathfrak{m}G_{\mathfrak{b}}(E)), \text{ where } \dim(-) \text{ denotes}$ Krull dimension. Set also $\lambda(\mathfrak{b}) = \dim(R(\mathfrak{b})/\mathfrak{m}R(\mathfrak{b}))$. We note that in general $\operatorname{ht}_E \mathfrak{b} \leq \lambda(\mathfrak{b}, E) \leq d = \operatorname{dim} E$ and that by [7, (9.7) Theorem] $\operatorname{dim}(G_{\mathfrak{b}}(E)) = \operatorname{dim} E$. The reduction number of an ideal was introduced by Sally [12], where he used explicitly the presence of small reduction number of the maximal ideal \mathfrak{m} in a Cohen-Macaulay local ring in order to study Cohen-Macaulay property of associated graded ring $G(\mathfrak{m})$. For further results and usefulness of this notion see [3,8,15]. A question due to Sally [13], which attained much attention is; when the reduction number of \mathfrak{b} is independent of the choice of minimal reduction? Some partial solutions of this problem were given in [8,9,10]. Most of results are based on the "a-invariant" and the end of some local cohomology modules. So it is suitable to describe them briefly. A nice reference for this material is [5], and the textbook by Brodmann and Sharp [1, Chapters 15, 18]. Let $S = \bigoplus_{n>0} S_i$ be a Noetherian graded ring with (S_0, \mathfrak{n}_0) a local ring. Let S_+ be the irrelevant ideal of S and $\mathfrak{N}=\mathfrak{n}_0S+S_+$ denote the maximal homogeneous ideal of S. Let L be a Noetherain graded S-module of dimension s. If $H^i_{\mu}(L)$ denotes the *i*-th graded local cohomology of L with support in graded ideal \mathfrak{u} of S, then it is well known that the *n*-th homogeneous component of $H_{S_+}^i(L)$ i.e., $[H_{S_+}^i(L)_n]$ is finitely generated for all $i \ge 0$ and all $n \in \mathbb{Z}$, and it is zero for large values of n. We set

$$a_i(L) = \operatorname{Max}\{n \in \mathbb{Z} : [H^i_{\mathfrak{M}}(L)]_n \neq 0\},\$$

and

$$\bar{a}_i(L) = \operatorname{Max}\{n \in \mathbb{Z} : [H^i_{S_\perp}(L)]_n \neq 0\}.$$

(Convention: If $H^i_{\mathfrak{N}}(L) = 0$ (resp. $H^i_{S_+}(L) = 0$) we set $a_i(L) = -\infty$ (resp. $\bar{a}_i(L) = -\infty$)). Then for convenience $a_s(L)$ is denoted simply as a(L) and called *a*-invariant of *L*.

In [8], Hoa by combining Trungs's approaches in [14] and an idea of [6] proved that for large values of n the reduction number of \mathfrak{b}^n is independent of n and any minimal reduction of \mathfrak{b}^n and he computed the asymptotic value of $r(\mathfrak{b}^n)$. More exactly he proved that for $n > Max\{|\bar{a}_i(G(\mathfrak{b}))| : \bar{a}_i(G(\mathfrak{b})) \neq 0\}, r(\mathfrak{b}^n) = \lambda(\mathfrak{b})$ if $\bar{a}_{\lambda(\mathfrak{b})}(G(\mathfrak{b})) \geq 0$ and otherwise $r(\mathfrak{b}^n) = \lambda(\mathfrak{b}) - 1$. On the other hand in [10], Marley proved that if A is Cohen-Macaulay, \mathfrak{b} is \mathfrak{m} -primary ideal and $\operatorname{grade}(G(\mathfrak{b})_+, G(\mathfrak{b})) > 0$, then $r(\mathfrak{b}) = a(G(\mathfrak{b})) + \dim A$ (see also [9, proposition 5.6]).

In this paper using some ideas of [4], under some assumptions on \mathfrak{b} and E, we find a formula for the invariant $r(\mathfrak{b}, E)$. More precisely we prove:

Theorem 1.1. Let (A, \mathfrak{m}) be a local ring and let E be a finitely generated d dimensional Cohen-Macaulay A-module. Let \mathfrak{b} be an ideal of A such that $ht_E\mathfrak{b} = 0$, $\lambda(\mathfrak{b}, E) = 1$, $r(\mathfrak{b}, E) > 0$ and $\mathfrak{b}_{\mathfrak{p}} = 0$ for all $\mathfrak{p} \in Min(E/\mathfrak{b}E)$. If $G_{\mathfrak{b}}(E)$ is Cohen-Macaulay, then $r(\mathfrak{b}, E) = a(G_{\mathfrak{b}}(E)) + 1$.

2. Proof of Theorem 1.1

We first prove some auxiliary lemmas.

Lemma 2.1. Suppose that E is Cohen-Macaulay and that $\mathfrak{b}_{\mathfrak{p}} = 0$ for each $\mathfrak{p} \in Min(E/\mathfrak{b}E)$. Let $b \in \mathfrak{b}$ such that $\sqrt{0:_A E + (b)} = \sqrt{0:_A E + \mathfrak{b}}$. Then $(0:_E b) \cap \mathfrak{b}E = 0$.

Proof. Let $0_E = Q_1 \cap ... \cap Q_n$ be a minimal primary decomposition of 0_E , with associated primes $\mathfrak{p}_i = \sqrt{Q_i :_A E}$ for each i = 1, ..., n, enumerated in such a way that $\mathfrak{b} \subseteq \mathfrak{p}_i$ for i = 1, ..., t and $\mathfrak{b} \not\subseteq \mathfrak{p}_i$ for i = t+1, ..., n. Since E is Cohen-Macaulay, we have $\operatorname{ht}_E \mathfrak{p}_i = 0$ for i = 1, ..., n. Since $\mathfrak{b}_{\mathfrak{p}} = 0$ for each $\mathfrak{p} \in \operatorname{Min}(E/\mathfrak{b}E)$, we have $\mathfrak{b}E \subseteq Q_1 \cap ... \cap Q_t$. Now suppose $x \in \mathfrak{b}E$ such that $bx = 0_E$. This in particular gives that $bx \in Q_i$ for i = t+1, ..., n. Since $\sqrt{0:_A E + (b)} = \sqrt{0:_A E + \mathfrak{b}}$ and $\mathfrak{b} \not\subseteq \mathfrak{p}_i$, so b is not an element of \mathfrak{p}_i for i = t+1, ..., n. Therefore $x \in Q_i$ for i = t+1, ..., n. So $x \in \mathfrak{b}E \cap Q_{t+1} \cap ... \cap Q_n \subseteq Q_1 \cap ... \cap Q_n = 0_E$ and the claim follows.

We remind the terminology we are using with respect to $G(\mathfrak{b})$. If $x \in A$ then x^* denotes the initial form of x in $G(\mathfrak{b})$, (i.e., the image of x in $\mathfrak{b}^n/\mathfrak{b}^{n+1}$, where $x \in \mathfrak{b}^n \setminus \mathfrak{b}^{n+1}$) and for each ideal \mathfrak{u} of A, the notation \mathfrak{u}^* denotes the ideal $\mathfrak{u}G(\mathfrak{b})$.

Lemma 2.2. Let $x \in \mathfrak{m} \setminus \mathfrak{b}$ be such that x^* be a $G_{\mathfrak{b}}(E)$ -regular element in $G(\mathfrak{b})$. Then $r(\mathfrak{b} + (x)/(x), E/xE) = r(\mathfrak{b}, E)$.

Proof. Let \mathfrak{a} be a minimal reduction of \mathfrak{b} relative to E such that $r = r(\mathfrak{b}, E) = r_{\mathfrak{a}}(\mathfrak{b}, E)$. Then an easy calculation gives that $(\mathfrak{a} + (x)/(x))(\mathfrak{b} + (x)/(x))^r E/xE = (\mathfrak{b} + (x)/(x))^{r+1}E/xE$ and thus $r(\mathfrak{b} + (x)/(x), E/xE) \leq r(\mathfrak{b}, E)$.

To prove the opposite inequality, suppose that $\mathfrak{c}/(x)$ be a minimal reduction of $\mathfrak{b} + (x)/(x)$ relative to E/xE satisfying $r' = r_{\mathfrak{c}/(x)}(\mathfrak{b} + (x)/(x), E/xE) = r(\mathfrak{b} + r)$

(x)/(x), E/xE). Then $\mathfrak{c}/(x)(\mathfrak{b} + (x)/(x))^{r'}E/xE = (\mathfrak{b} + (x)/(x))^{r'+1}E/xE$ which gives that $\mathfrak{c}\mathfrak{b}^{r'}E + xE = \mathfrak{b}^{r'+1}E + xE$ so that $\mathfrak{b}^{r'+1}E \subseteq \mathfrak{c}\mathfrak{b}^{r'}E + xE$. Therefore $\mathfrak{b}^{r'+1}E = \mathfrak{b}^{r'+1}E \cap (\mathfrak{c}\mathfrak{b}^{r'}E + xE) = \mathfrak{c}\mathfrak{b}^{r'}E + xE \cap \mathfrak{b}^{r'+1}E$. Since x^* is $G_{\mathfrak{b}}(E)$ -regular element, we have $xE \cap \mathfrak{b}^{r'+1}E = x\mathfrak{b}^{r'+1}E$. Hence $\mathfrak{b}^{r'+1}E = \mathfrak{c}\mathfrak{b}^{r'}E + x\mathfrak{b}^{r'+1}E$. Now using Nakayama's lemma we deduce that $\mathfrak{b}^{r'+1}E = \mathfrak{c}\mathfrak{b}^{r'}E$. Consequently $r(\mathfrak{b}, E) \leq r'$ and the proof of the claim is complete. \Box

Lemma 2.3. Let $x \in \mathfrak{m} \setminus \mathfrak{b}$ and assume that x^* is $G_{\mathfrak{b}}(E)$ -regular. Let $\mathfrak{b}' = \mathfrak{b} + (x)/(x)$. Then $R_{\mathfrak{b}'}(E/xE) = R_{\mathfrak{b}}(E)/xR_{\mathfrak{b}}(E)$.

Proof. We can write

$$R_{\mathfrak{b}'}(E/xE) = \bigoplus_{n \ge 0} \mathfrak{b}'^n E/xE = \bigoplus_{n \ge 0} (\mathfrak{b}'^n + (x))E/xE \cong \bigoplus_{n \ge 0} \mathfrak{b}'^n E/xE \cap \mathfrak{b}'^n E.$$

Now since x^* is $G_{\mathfrak{b}}(E)$ -regular element, the last module is equal to $\bigoplus_{n\geq 0} {\mathfrak{b}'}^n E/x {\mathfrak{b}'}^n E$ which is isomorphic to $R_{\mathfrak{b}}(E)/x R_{\mathfrak{b}}(E)$.

Lemma 2.4. Let S, L, \mathfrak{N} and \mathfrak{n}_0 be as in section 1 such that L is annihilated by some power of S_+ . Then for any $i \ge 0$ and $n \in \mathbb{Z}$ we have an isomorphism $[H^i_{\mathfrak{N}}(L)]_n \cong H^i_{\mathfrak{n}_0}(L_n)$ of S_0 -modules.

Proof. There exists $t \in \mathbb{N}$ such that $S^t_+L = 0$. Thus L is an S/S^t_+ -module and so by [1, 4.2.1], we may assume that $S_k = 0$ for all large values of k. But in this case we have $\mathfrak{N} = \sqrt{\mathfrak{n}_0 S}$, which gives that $H^i_{\mathfrak{N}}(L) \cong H^i_{\mathfrak{n}_0}(L)$ and the result follows by [1, 13.1.10].

Here we note that if \mathfrak{a} is a reduction of \mathfrak{b} relative to E, then $\lambda(\mathfrak{b}, E) \leq \mu(\mathfrak{a})$ the number of elements of any minimal generating set for \mathfrak{a} and equality holds if and only if \mathfrak{a} is a minimal reduction of \mathfrak{b} relative to E (see [2, Proposition 4.5.8] and also [15, section 4]). Keeping this in mind we state the following lemma which proves Theorem 1.1 in some special case.

Lemma 2.5. Let *E* be a one dimensional Cohen-Macaulay A-module and \mathfrak{b} be an ideal of *A* such that $ht_E\mathfrak{b} = 0$ and $\lambda(\mathfrak{b}, E) = 1$. Assume that $\mathfrak{b}_{\mathfrak{p}} = 0$ for all $\mathfrak{p} \in Min(E/\mathfrak{b}E)$. Let (b) be a minimal reduction of \mathfrak{b} relative to *E* and $r = r_{(b)}(\mathfrak{b}, E) > 0$. Then $r = a(G_{\mathfrak{b}}(E)) + 1$.

Proof. We first show that $a = a(G_{\mathfrak{b}}(E)) \leq r - 1$. Let $N = (0:_{G_{\mathfrak{b}}(E)} b^*)$ and $\overline{G} = G_{\mathfrak{b}}(E)/b^*G_{\mathfrak{b}}(E)$. The short exact sequences

$$0 \longrightarrow N(-1) \longrightarrow G_{\mathfrak{b}}(E)(-1) \xrightarrow{b} b^* G_{\mathfrak{b}}(E) \longrightarrow 0$$

and

$$0 \longrightarrow b^* G_{\mathfrak{b}}(E) \longrightarrow G_{\mathfrak{b}}(E) \longrightarrow \bar{G} \longrightarrow 0,$$

of graded $G(\mathfrak{b})$ -modules induce the exact sequences of graded local cohomology modules, from which we deduce the exact sequences

$$0 \to H^0_{\mathbf{m}}(b^*G_{\mathfrak{b}}(E))_{a+1} \to H^1_{\mathbf{m}}(N)_a \xrightarrow{f} H^1_{\mathbf{m}}(G_{\mathfrak{b}}(E))_a \xrightarrow{g} H^1_{\mathbf{m}}(b^*G_{\mathfrak{b}}(E))_{a+1} \to 0,$$

and

$$0 \to H^0_{\mathbf{m}}(\bar{G})_{a+1} \to H^1_{\mathbf{m}}(b^*G_{\mathfrak{b}}(E))_{a+1} \xrightarrow{h} H^1_{\mathbf{m}}(G_{\mathfrak{b}}(E))_{a+1} \xrightarrow{k} H^1_{\mathbf{m}}(\bar{G})_{a+1} \to 0,$$

of local cohomology modules (Note that by [7, (9.7) Theorem] we have dim $N \leq 1$ and dim $(b^*G_{\mathfrak{b}}(E)) \leq 1$).

We consider the following two cases:

(i) If $g: H^1_{\mathbf{m}}(G_{\mathfrak{b}}(E))_a \to H^1_{\mathbf{m}}(b^*G_{\mathfrak{b}}(E))_{a+1}$ is the zero map, then $H^1_{\mathbf{m}}(N)_a \neq 0$ and in particular $N_a \neq 0$ by Lemma 2.4. We claim that a = 0 or else a < r - 1. Suppose the contrary a > 0 and $a \ge r - 1$ (note that r > 0). Let $0 \ne x^* \in N_a$. Then $x \in \mathfrak{b}^a E \setminus \mathfrak{b}^{a+1} E$ and $b^* x^* = 0$. This means that $bx \in \mathfrak{b}^{a+2} E = (b)\mathfrak{b}^{a+1} E$ (note that $a + 1 \ge r$). Thus there exists $y \in \mathfrak{b}^{a+1} E$ such that bx = by. This gives that $x - y \in (0 :_E b) \cap \mathfrak{b} E$ and so in view of Lemma 2.1, we have $x = y \in \mathfrak{b}^{a+1} E$, which is a contradiction. So the claim is true and we have $a \le r - 1$ in this case.

(ii) If $g: H^1_{\mathbf{m}}(G_{\mathfrak{b}}(E))_a \to H^1_{\mathbf{m}}(b^*G_{\mathfrak{b}}(E))_{a+1}$ is not the zero map. Then there exists $x \in H^1_{\mathbf{m}}(G_{\mathfrak{b}}(E))_a$ such that $0 \neq g(x) \in H^1_{\mathbf{m}}(b^*G_{\mathfrak{b}}(E))_{a+1}$ and $h(g(x)) \in H^1_{\mathbf{m}}(G_{\mathfrak{b}}(E))_{a+1} = 0$ by the definition of a. Therefore by the second exact sequence $0 \neq g(x) \in H^0_{\mathbf{m}}(\bar{G})_{a+1}$. This means that $H^0_{\mathbf{m}}(\bar{G})_{a+1} \neq 0$ and so $\bar{G}_{a+1} \neq 0$. From this it follows that $(b)\mathfrak{b}^a E \neq \mathfrak{b}^{a+1}E$ and so a < r by the definition of r. Thus $a \leq r-1$ and the claim is also true in this case.

Now we show that $a \geq r-1$. It follows from the first exact sequence that $H^1_{\mathbf{m}}(b^*G_{\mathfrak{b}}(E))_n = 0$ for all $n \geq a+2$. Hence by the second exact sequence we have $H^0_{\mathbf{m}}(\bar{G})_n = 0$ for all $n \geq a+1$. Also by the second exact sequence we deduce that $H^1_{\mathbf{m}}(\bar{G})_n = 0$ for all $n \geq a+1$. Therefore by Lemma 2.4 we have $H^0_{\mathfrak{m}}(\bar{G}_{a+2}) = 0$ and $H^1_{\mathfrak{m}}(\bar{G}_{a+2}) = 0$. From this it follows that If $\bar{G}_{a+2} \neq 0$ then grade $(\mathfrak{m}, \bar{G}_{a+2}) > 1 = \dim E$, which is impossible. So $\bar{G}_{a+2} = 0$. Thus we must have $(b)\mathfrak{b}^{a+1}E + \mathfrak{b}^{a+3}E = \mathfrak{b}^{a+2}E$. It follows by the Nakayama's lemma that $(b)\mathfrak{b}^{a+1}E = \mathfrak{b}^{a+2}E$. Therefore $a+1 \geq r$ if a+1 > 0. But $H^1_{\mathbf{m}}(\bar{G})_0 = H^1_{\mathbf{m}}(\bar{G}_0) = H^1_{\mathbf{m}}(E/\mathfrak{b}E) \neq 0$ (note that since E is Cohen-Macaulay and $\operatorname{ht}_E \mathfrak{b} = 0$, we have $\dim E/\mathfrak{b}E = 1$). Thus by the second exact sequence we have $H^1_{\mathbf{m}}(G_{\mathfrak{b}}(E))_0 \neq 0$. Hence $a \geq 0$ and a+1 > 0. The proof now is completed.

118

Remark 2.6. Let $\mathfrak{b}_{\mathfrak{p}} = 0$ for all $\mathfrak{p} \in Min(E/\mathfrak{b}E)$, then the set

$$\mathcal{P} = \{ \mathfrak{p} \in Supp(E) : \mathfrak{b} \subseteq \mathfrak{p}, \mathfrak{b}_{\mathfrak{p}} = 0 \text{ and } ht_E \mathfrak{p} = 1 \},\$$

as a minimal elements of a Zariski-closed set is a finite set.

Proof of Theorem 1.1. We proceed by induction on $d = \dim E \ge 1$. The case d = 1 was settled in previous lemma. So let $d \ge 2$. Since $G_{\mathfrak{b}}(E)$ is Cohen-Macaulay and $\lambda(\mathfrak{b}, E) = 1$, so we have grade($\mathfrak{m}^*, G_{\mathfrak{b}}(E)$) = $\operatorname{ht}_{G_{\mathfrak{b}}(E)}\mathfrak{m}^* - \dim G_{\mathfrak{b}}(E)/\mathfrak{m}G_{\mathfrak{b}}(E) = d-1 \ge 1$. Since k is infinite, it follows from this that there exists a $G_{\mathfrak{b}}(E)$ -regular element, of degree zero, say x^* , in $G(\mathfrak{b})$ (that is in fact in $\mathfrak{m}/\mathfrak{b}$). With the same assumption as in Remark 2.6 we have $\mathfrak{m} \not\subseteq \cup_{\mathfrak{p} \in \mathcal{P}} \mathfrak{p}$. Hence we may select x^* in such a way that $x \in \mathfrak{m} \setminus \bigcup_{\mathfrak{p} \in \mathcal{P}} \mathfrak{p}$. Then it follows that $\operatorname{ht}_E \mathfrak{b} = \operatorname{ht}_{E/xE}(\mathfrak{b} + (x)/(x)), \mathfrak{b}_{\mathfrak{p}} = 0$ for all $\mathfrak{p} \in \operatorname{Min}(E/(\mathfrak{b} + (x))E)$ and $\dim(E/(\mathfrak{b} + (x))E) < \dim E = d$. We note that E/xE and $G_{\mathfrak{b}+(x)/(x)}(E/xE) \cong G_{\mathfrak{b}}(E)/x^*G_{\mathfrak{b}}(E)$ are Cohen-Macaulay and that by applying the local cohomology functors $H^i_{\mathbf{m}}(-)$ to the exact sequence

$$0 \longrightarrow G_{\mathfrak{b}}(E) \xrightarrow{x^*} G_{\mathfrak{b}}(E) \longrightarrow G_{\mathfrak{b}}(E) / x^* G_{\mathfrak{b}}(E) \longrightarrow 0,$$

and using the fact that x^* is of degree zero, it is easy to see that $a(G_{\mathfrak{b}}(E)/x^*G_{\mathfrak{b}}(E)) = a(G_{\mathfrak{b}}(E))$. Now using Lemma 2.2, we have $r(\mathfrak{b} + (x)/(x), E/xE) = r(\mathfrak{b}, E)$. Also by Lemma 2.3 we have $R_{\mathfrak{b}+(x)/(x)}(E/xE) \cong R_{\mathfrak{b}}(E)/xR_{\mathfrak{b}}(E)$. Therefore

$$\lambda(\mathfrak{b} + (x)/(x), E/xE) = \dim(R_{\mathfrak{b} + (x)/(x)}(E/xE)/\mathfrak{m}/(x)R_{\mathfrak{b} + (x)/(x)}(E/xE))$$
$$= \dim(R_{\mathfrak{b}}(E)/\mathfrak{m}R_{\mathfrak{b}}(E)) = \lambda(\mathfrak{b}, E) = 1.$$

So we can reduce to the case d = 1 and the proof of the Theorem follows by Lemma 2.5.

We proved Theorem 1.1, with the assumption that $ht_E(\mathfrak{b}) = 0$. For ideals \mathfrak{b} of arbitrary $ht_E(\mathfrak{b})$ we could not prove the same result. Although in the ring version it has been proved in [4] for ideals of arbitrary hight. So the following question arises.

Question. Does Theorem 1.1 hold true for ideals \mathfrak{b} of arbitrary ht_E(\mathfrak{b})?

References

- [1] M. Brodmann and R. Sharp, Local Cohomology: An Algebraic Introduction with Geometric Applications, Cambridge University Press, Cambridge, 1998.
- [2] W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge University Press, Cambridge, 1993.

NASER ZAMANI

- [3] C. D'Cruz, V. Kodiyalam and J. K. Verma, Bounds on the a-invariant and reduction numbers of ideals, J. Algebra, 274 (2004) 594-601.
- [4] S. Goto and S. Huckaba, On graded rings associated to analytic deviation one ideals, Amer. J. Math., 116 (1994) 905-919.
- [5] S. Gote and K. Watanabe, *Graded rings I*, J. Math. Soc. Japan, 30 (1978) 179-213.
- [6] M. Hermann, J. Ribbe and S. Zarzula, On the Gorenstein property of Rees and form rings of powers of ideals, Trans. Amer. Math. Soc., 342(2) (1994), 631-643.
- [7] M. Hermann, S. Ikeda and U. Orbanz, Equimultiplicity and Blowing Up, Springer-Verlag, New york, 1988.
- [8] L. T. Hoa, Reduction numbers and Rees algebras of powers of an ideal, Proc. Amer. Math. Soc., 119 (1993) 415-422.
- [9] L. T. Hoa, Reduction numbers of equimultiple ideals, J. Pure Appl. Algebra, 109 (1996) 111-126.
- [10] T. Marley, The reduction number of an ideal and the local cohomology of the associated graded ring, Proc. Amer. Math. Soc., 117 (1993) 335-341.
- [11] D. G. Northcott and D. Rees, *Reductions of ideals in local rings*, Proc. Camb. Phil. Soc., 50 (1954) 145-158.
- [12] J. Sally, On the associated graded ring of a local Cohen-Macaulay ring, J. Math. Kyoto Univ., 17 (1977) 19-21.
- [13] J. Sally, Reductions, local cohomology and Hilbert functions of local rings, Commutative algebra: Durham 1981, London Math. Soc. Lecture Note Ser., vol. 72, Cambridge University Press, 1982, pp. 393-408.
- [14] N. V. Trung, Reduction exponents and degree bound for the defining equations of graded rings, Proc. Amer. Math. Soc., 101 (1987) 229-236.
- [15] N. V. Trung, Towards a theory of generalized Cohen-Macaulay modules, Nagoya Math. J., 102 (1986) 1-49.

Naser Zamani

Faculty of Science, University of Mohaghegh Ardabili P.O.Box 179, Ardabil, Iran e-mail: naserzaka@yahoo.com