All rings are associative with identity and all modules are unitary. Throughout this corrigendum R denotes a commutative ring with identity $1 \neq 0$. The field of rational numbers is denoted by \mathbb{Q} unless otherwise stated. Let R be a ring. The set of prime ideals of R is denoted by $\text{Spec}(R)$, the set of associated prime ideals of R (viewed as a right R-module) is denoted by $\text{Ass}(R_R)$ and the set of minimal prime ideals of R is denoted by $\text{Min.Spec}(R)$. $\text{Assas}(U)$ denotes the assassinator of a uniform R-module U and for any subset J of a right R-module M, the annihilator of J is denoted by $\text{Ann}(J)$. The set of regular elements of R is denoted by $C(0)$ and for any ideal I of R, the set of elements regular modulo I is denoted by $C(I)$.

Recall that a prime ideal P of R is said to be strongly prime if and only if for any $a, b \in R$ either $aP \subseteq bR$ or $bR \subseteq aP$. The set of strongly prime ideals of a ring R is denoted by $S\text{.Spec}(R)$.

Let now σ be an automorphism of R and δ a σ-derivation of R. Consider the Ore extension $O(R) = R[x; \sigma, \delta] = \{ \sum_{i=0}^{n} x^i a_i, \ a_i \in R \}$ in which multiplication is subject to the relation $ax = x\sigma(a) + \delta(a)$ for all $a \in R$.

To prove Theorem 2.5 and Corollary 2.6 of [2], the author uses Proposition 2.5 of [1].

Theorem 1. (Theorem 2.5 of [2]) Let R be a Noetherian near pseudo-valuation ring which is also an algebra over \mathbb{Q}. Let σ be an automorphism of R such that R is a $\sigma(\ast)$-ring and δ a σ-derivation of R. Then $O(R)$ is a Noetherian near pseudo-valuation ring.

Corollary 2. (Corollary 2.6 of [2]) Let R be a Noetherian near pseudo-valuation ring which is also an algebra over \mathbb{Q}, σ and δ as usual such that $\sigma(U) = U$ for all $U \in \text{Min.Spec}(R)$. Then $O(R)$ is a Noetherian near pseudo-valuation ring.

Proposition 3. (Proposition 2.5 of [1]) Let R be a ring, σ an automorphism of R and δ a σ-derivation of R. Then:
(1) For any strongly prime ideal P of R with $\delta(P) \subseteq P$ and $\sigma(P) = P$, $O(P)$ is a strongly prime ideal of $O(R)$.

(2) For any strongly prime ideal U of $O(R)$, $U \cap R$ is a strongly prime ideal of R.

Proposition 3 above is false. This mistake was found by Prof. Feran Cedo and communicated to Prof. Dolors Herbera (Editor IEJA).

We note that the hypothesis (used above) that any $U \in S.Spec(R)$ with $\sigma(U) = U$ and $\delta(U) \subseteq U$ implies that $O(U) \in S.Spec(O(R))$ is too restrictive. This leads to the fact that $U = 0$ [Proof: This proof is done and forwarded by Prof. Dolors Herbera to the author : if $U \neq 0$ and $O(U) \in S.Spec(O(R))$ then either $O(U) \subseteq xO(R)$ or $xO(R) \subseteq O(U)$. The first case is not possible because $0 \neq U \subseteq O(U) \cap R \subseteq xO(R) \cap R = 0$ which is a contradiction. Therefore, $xO(R) \subseteq O(U)$ but then $1 \in U$ so that $U = R$ which is impossible with a prime ideal].

Example 4. Let $R = \mathbb{Z}_{(p)}$. This is in fact a discrete valuation domain, and therefore, its maximal ideal $P = pR$ is strongly prime. But $pR[x]$ is not strongly prime in $R[x]$ because it is not comparable with $xR[x]$ (so the condition of being strongly prime in $R[x]$ fails for $a = 1$ and $b = x$).

Consequent upon this, Proposition 2.4, Theorem 2.5 and Corollary 2.6 of [2] must be deleted from the paper.

Acknowledgement: The author would like to express his sincere thanks to Prof. Feran Cedo and Prof. Dolors Herbera for their timely communication regarding the mistake, and Example 4.

References

V.K. Bhat
School Mathematics,
SMVD University,
P/o Kakryal, Katra, J and K,
India -182320
e-mail: vijaykumarbhx8000@yahoo.com