\mathcal{L}_2 -PRIME AND DIMENSIONAL MODULES

M. R. Vedadi

Received: 15 December 2008; Revised: 4 September 2009 Communicated by Abdullah Harmancı

ABSTRACT. We introduce a map κ that generalizes Krull and Noetherian dimensions. If M_R finitely generates all fully invariant submodules and has acc on them, there are only a finite number of minimal \mathcal{L}_2 -prime submodules $P_i(1 \leq i \leq n)$ and when defined, $\kappa(M) = \kappa(M/P_j)$ for some j. Here, each M/P_i is a prime R-module, and in particular, M has finite length if every irreducible prime submodule of M is maximal. Quasi-projective \mathcal{L}_2 -prime Rmodule with non-zero socle are investigated and some applications are then given when $\kappa(M)$ means the Krull dimension or the injective dimension.

Mathematics Subject Classification (2000): Primary 16D10, 16P10; Secondary 16P40

Keywords: dimension map, hereditary ring, Krull dimension, \mathcal{L}_2 -Noetherian, \mathcal{L}_2 -prime submodule

1. Introduction

Throughout rings will have unit elements and modules will be right unitary. Let R be a ring. A non-empty class of R-modules is called *weak hereditary* if it is closed under homogeneous finite direct sums, homomorphic images and taking submodules. A map κ from a weak hereditary class of R-modules to the set of all cardinal numbers, is called a *dimension* map, if κ takes the same value on finite direct sum of isomorphic modules, with the conditions $\kappa(M/N) \leq \kappa(M) \in$ $\{\kappa(N), \kappa(M/N)\}$ for every $N \leq M$. An R-module M is called *dimensional* if it belongs to the domain of some dimension map κ . In this case, we say that M is κ -dimensional and $\kappa(M)$ means the κ -dimension of M. Any module with Krull dimension (resp. Noetherian dimension) is a κ -dimensional module where $\kappa(M)$ means the Krull dimension (resp. Noetherian dimension) of M, see [5, Chapter 15], [10], [1], [8]. By [10, Corollaire 6], an R-module has Krull dimension if and only if it has Noetherian dimension. However, there are dimensional R-modules which have not necessarily Krull dimensions. Defining $\kappa(M) =$ the injective dimension

Dedicated to Professor O.A.S. Karamzadeh on the occasion of his sixty fifth birthday.

of M_R for all M in Mod-R, the class of all R-modules, we obtain a dimension map κ : Mod- $R \to \{0,1\}$ if R is a right hereditary ring. Hence, modules over right hereditary rings are dimensional. More generally, for an arbitrary ring R, let $\kappa'(M) = -1$ if M_R has a finite length, otherwise $\kappa'(M) = 1$. Then it is easy to verify that κ' : Mod- $R \to \{-1,1\}$ is a dimension map and so all R-modules are κ' -dimensional. In this paper, it is shown that the computation of κ -dimension of certain κ -dimensional modules reduces to that of some prime factor modules. Some applications are then obtained when $\kappa(M)$ means either Krull dimension or Noetherian dimension or injective dimension of a module. In [2], a module M_R has been called "prime" if $N_1 \star N_2 = 0$ implies $N_1 = 0$ or N_2 for all submodules N_1 , N_2 of M where $N_1 \star N_2 = \operatorname{Hom}_R(M, N_1)N_2$. These prime modules have been called \star -prime modules in [11] where some applications of them are obtained. If P is a proper submodule of a module M_R , we say that P is an \mathcal{L}_2 -prime submodule of M if $W_1 \star W_2 \subseteq P$ implies $W_1 \subseteq P$ or $W_2 \subseteq P$ where W_1, W_2 belong to $\mathcal{L}_2(M)$, the set of all fully invariant submodules of M_R . Also, minimal \mathcal{L}_2 -prime submodule means minimal among all \mathcal{L}_2 -prime submodules of M. If (0) is an \mathcal{L}_2 -prime submodule of M_R then M is called an \mathcal{L}_2 -prime R-module. Clearly, every \star -prime module M is \mathcal{L}_2 -prime and the converse is true if M is a DUO module in the sense of [13] (i.e., all of submodules of M are fully invariant). By a prime module M_R we mean the "classical" notion of a prime module, that is, $\operatorname{ann}_R(N) = \operatorname{ann}_R(M)$ for any $0\neq N\leq M.$

We first study some properties of \mathcal{L}_2 -prime submodules of a module and show, among other things, that a quasi-projective \mathcal{L}_2 -prime module with non-zero socle is semisimple if it has acc on direct summands (Theorem 2.4). Next, we introduce \mathcal{L}_2 -Noetherian modules (page 5) and prove that if M is an \mathcal{L}_2 - Noetherian κ dimensional R-module, then M has only a finite number of minimal \mathcal{L}_2 -prime fully invariant submodules P_1, \dots, P_n such that $\kappa(M) = \text{Max}\{\kappa(M/P_1), \dots, \kappa(M/P_n)\}$ (Theorem 3.1). In particular, a generalization of Lambek-Michler Theorem [9, Theorem 3.6] is obtained (Proposition 3.2(i)) and a module theoretic version of Ginn-Moss Theorem [5, Theorem 8.16] is offered (Corollary 3.11).

Any unexplained terminology, and all the basic results on rings and modules that are used in the sequel can be found in [12] and [16].

2. \mathcal{L}_2 -prime submodules

Let K and P be proper submodules of a module M_R . We say that P is a minimal \mathcal{L}_2 -prime submodule over K if P is minimal among all \mathcal{L}_2 -prime submodules which contain K, in this case, we write $K \stackrel{min}{\leq} P$. We begin with the following result.

Proposition 2.1. Let M be a non-zero R-module.

(i) If N is any \mathcal{L}_2 -prime submodule of M then for every $K \leq N$ there exists an \mathcal{L}_2 -prime submodule P of M such that $K \stackrel{min}{\leq} P \leq N$.

(ii) If P is a proper fully invariant \mathcal{L}_2 -prime submodule of M_R , then M/P is a prime R-module.

Proof. (i) By Zorn's Lemma, pick a maximal chain $\{N_i\}_{i \in I}$ of \mathcal{L}_2 -prime submodules of M such that $K \leq N_i \subseteq N$ for all $i \in I$. Then N contains the \mathcal{L}_2 -prime submodule $P = \bigcap_i N_i$ of M and also we have $K \stackrel{min}{\leq} P$ by the maximality of $\{N_i\}_{i \in I}$ (to see P is an \mathcal{L}_2 -prime submodule, let $W_1 \star W_2 \subseteq P$ for some $W_1, W_2 \in \mathcal{L}_2(M)$. If $W_1, W_2 \not\subseteq P$, then there exists $i \in I$ such that both $W_1, W_2 \not\subseteq N_i$. But $W_1 \star W_2 \subseteq N_i$ and N_i is \mathcal{L}_2 prime, a contradiction).

(ii) By [11, Lemma 5.3].

If M_R has acc on fully invariant submodules, we don't know whether M has an \mathcal{L}_2 -prime submodule. However, the following result shows that the set of all minimal \mathcal{L}_2 -prime submodules of M is a finite set. Proposition 2.5 provides examples of modules with \mathcal{L}_2 -prime submodules.

Proposition 2.2. Let M_R be a module with acc on fully invariant submodules. (i) If N is an \mathcal{L}_2 -prime submodule of M, then N contains an \mathcal{L}_2 -prime fully invariant submodule of M.

(ii) The set of all minimal \mathcal{L}_2 -prime submodules of M is a finite set and each minimal \mathcal{L}_2 -prime submodule is a fully invariant submodule.

Proof. (i) Let K be maximal among all fully invariant submodules of M which contained in N. Then K is an \mathcal{L}_2 -prime submodule of M. In fact, if there exist $W_1, W_2 \in \mathcal{L}_2(M)$ such that $W_1 \star W_2 \subseteq K$. Then $W_1 \star W_2 \subseteq N$ and hence $W_1 \subseteq N$ or $W_2 \subseteq N$. Thus $W_1 + K = K$ or $W_2 + K = K$ by maximality of K. It follows that $W_1 \subseteq K$ or $W_2 \subseteq K$, proving that K is an \mathcal{L}_2 -prime submodule of M.

(ii) Suppose that M has infinite number of minimal \mathcal{L}_2 -prime submodules and set $\mathcal{A} = \{L \leq M \mid L \text{ is proper fully invariant and there exist infinite number of <math>\mathcal{L}_2$ -prime submodule of M which are minimal over $L\}$. Then $(0) \in \mathcal{A}$ and by hypothesis \mathcal{A} has a maximal member N. Thus N is not an \mathcal{L}_2 -prime submodule of M. It follows

that there exist $W_1, W_2 \in \mathcal{L}_2(M)$ such that $W_1 \star W_2 \subseteq N$ and $W_1, W_2 \not\subseteq N$. Let $C_1 = W_1 + N$ and $C_2 = W_2 + N$. Because $W_1 \star W_2 \subseteq N$, we have $\{P \mid N \stackrel{min}{\leq} P\}$ $\subseteq \{P \mid C_1 \stackrel{min}{\leq} P\} \cup \{P \mid C_2 \stackrel{min}{\leq} P\}$, but the union is a finite (even the empty) set by maximality of N, a contradiction. Hence M cannot have infinite number of minimal \mathcal{L}_2 -prime submodules. The last statement is clear by (i).

Proposition 2.3. Let M be quasi-projective R-module.

(i) Every minimal \mathcal{L}_2 -prime submodule of M is fully invariant.

(ii) A fully invariant submodule P of M is an \mathcal{L}_2 -prime submodule of M if and only if $(M/P)_R$ is an \mathcal{L}_2 -prime module.

Proof. (i) Let N be a minimal \mathcal{L}_2 -prime submodule of M and let $P = \operatorname{Rej}(M, M/N)$, then P is a fully invariant submodule of M and $P \subseteq N$. We shall show that P is an \mathcal{L}_2 -prime submodule of M. Let $W_1 \star W_2 \subseteq P$ for some $W_1, W_2 \in \mathcal{L}_2(M)$. Then $W_1 \star W_2 \subseteq N$ and hence $W_1 \subseteq N$ or $W_2 \subseteq N$. On the other hand, because M_R is quasi-projective, $\operatorname{Rej}(M, M/N) = \{m \in M \mid Tm \subseteq N\}$ where $T = \{f \in$ $\operatorname{End}_R(M) \mid f(N) \subseteq N\}$. Also for each $i = 1, 2, W_i \subseteq N$ implies $TW_i \subseteq TN \subseteq N$. Therefore, we have $W_1 \subseteq P$ or $W_2 \subseteq P$. This shows that P is \mathcal{L}_2 prime, as desired. (ii) This is true because for every $P \leq N \leq M_R$, the hypothesis implies that M is N-projective, hence we have $\operatorname{Hom}_R(M/P, N/P) = \{F \mid \exists f : M_R \to N_R \text{ such that}$ $F(m + P) = f(m) + P \forall m \in M\}$.

Theorem 2.4. Let M be a quasi-projective \mathcal{L}_2 -prime R-module with non-zero socle. If either Soc(M) is finitely generated or M has acc on direct summands then M_R is homogenous semisimple.

Proof. Because M is an \mathcal{L}_2 -prime module, $0 \neq K \star L \subseteq K \cap L$, for all non-zero fully invariant submodules K and L of M. It follows that $W := \operatorname{Soc}(M_R)$ is a homogeneous semisimple R-module. Since $W \star W \neq 0$, there exists $f: M \to W$ such that $f(W) \neq 0$. Let $W = \oplus S_i$ where $\{S_i\}_i$ are isomrphic simple submodules of M. Then $f = \sum f_i$ where $f_i: M \to S_i$. Since $W \not\subseteq \ker f = \bigcap \ker f_i$, there exists f_i such that $W \not\subseteq \ker f_i$. Thus $\ker f_i$ is a maximal submodule of M which not essential. It follows that $M = S_{i_1} \oplus L_1$ for some $L_1 \leq M_R$ and simple submodule S_{i_1} . Suppose that L_1 is non-zero and let $W_1 = \operatorname{Soc}(L_1)$. We claim $\operatorname{Hom}_R(L_1, W_1) \neq 0$. If $\operatorname{Hom}_R(L_1, W_1) = 0$, then $\operatorname{Hom}_R(L_1, S_{i_1}) = 0$. This in turn follows that L_1 and hence W_1 are fully invariant submodule of M. It follows by hypothesis that $\operatorname{Hom}_R(M, W_1)L_1 \neq 0$, a contradiction. Therefore, $\operatorname{Hom}_R(L_1, W_1) \neq 0$, as claimed. Consequently, there exists a simple submodule U of W_1 which is homomorphic image of L_1 . Because $U \simeq S_{i_1}$ and M is quasi-projective, $L_1 = S_{i_2} \oplus L_2$ for some $L_2 \leq L_1$ and simple submodule S_{i_2} . By hypothesis, this process is stopped (i.e. $L_n = 0$ for some $n \geq 1$) and so M = Soc(M).

Proposition 2.5. Let M finitely generate fully invariant submodules. If N is maximal among all proper fully invariant submodules, then N is an \mathcal{L}_2 -prime submodule.

Proof. Note that if $W_1 \star W_2 \subseteq N$ and $W_2 + N = M$ for some fully invariants submodules W_1, W_2 , then $W_1 = \text{Hom}(M, W_1)(W_2 + N) \subseteq N$.

An *R*-module *M* is called \mathcal{L}_2 -*Noetherian* if it finitely generates all of its fully invariant submodules and has acc on them. Self generator Noetherian modules and modules without non-trivial fully invariant submodules are clearly \mathcal{L}_2 -Noetherian. It is easy to verify that the *R*-module *R* is \mathcal{L}_2 -Noetherian if and only if every two sided ideal of *R* is finitely generated as a right ideal.

Example 2.6. (i) For a non-trivial example of \mathcal{L}_2 -Noetherian modules which are not Noetherian, consider the \mathbb{Z} -module $M = \mathbb{Q} \oplus \mathbb{Z}$. Then $M_{\mathbb{Z}}$ is not Noetherian and each fully invariant submodule of $M_{\mathbb{Z}}$ has the form $\mathbb{Q} \oplus (n\mathbb{Z})$ for some $n \ge 0$, hence $M_{\mathbb{Z}}$ is \mathcal{L}_2 -Noetherian. This can easily be seen from the fact that $\operatorname{End}_{\mathbb{Z}}(M) = \begin{bmatrix} \mathbb{Q} & \mathbb{Q} \\ 0 & \mathbb{Z} \end{bmatrix}$.

(ii) Let R be a non-Artinian right primitive ring with simple faithful R-module M. Then there is no ring T such that ${}_TM_R$ is a bimodule and ${}_TM$ is Noetherian (or even ${}_TM$ is finitely generated). Because if ${}_TM$ is finitely generated, then R embedding in $M_R^{(n)}$ for some $n \ge 1$, is Artinian. Consequently, M_R is an \mathcal{L}_2 -Noetherian such that ${}_SM$ is not Noetherian where $S = \operatorname{End}_R(M)$.

It is known that a prime ideal is either a minimal prime ideal or essential as a right ideal. In [6], a ring R is said to satisfy $r.min \pi$ -condition if no minimal prime ideal of R is essential as a right ideal. Generalizing this to module M_R , we say M satisfies $min \mathcal{L}_2$ - π condition if no minimal \mathcal{L}_2 -prime submodule of M is an essential submodule. Clearly, \mathcal{L}_2 -prime modules and semisimple modules satisfy the min \mathcal{L}_2 - π condition. Also, it is well known that every semiprime right Goldie ring satisfies the r.min π -condition [5, Propositions 6.13, 7.3], however there are non semiprime rings which satisfy the r.min π -condition [6, Example 3.10]. If M is a quasi-projective module which satisfies the min \mathcal{L}_2 - π condition and Soc(M) is an essential submodule of M, then M/P is an \mathcal{L}_2 -prime module with non-zero socle, for every minimal \mathcal{L}_2 -prime submodule P of M. In view of Theorem 2.4, it is then not out of place to consider the min \mathcal{L}_2 - π condition. **Theorem 2.7.** Let M be a non-zero quasi-projective \mathcal{L}_2 -Noetherian R-module with Krull dimension. Then the following statements are equivalent.

(i) M is a semisimple R-module.

(ii) Soc(M) is an essential submodule of M and $\bigcap P = 0$ where the intersection runs through the set of minimal \mathcal{L}_2 -prime submodules of M.

(iii) Soc(M) is an essential submodule of M and M satisfies the min \mathcal{L}_2 - π condition.

Proof. (i) \Rightarrow (ii). This is true by Proposition 2.3(i) and the fact that fully invariant submodules of M are its components.

(ii) \Rightarrow (iii). By Proposition 2.2, M has only a finite number of minimal \mathcal{L}_2 -prime submodules $P_i(1 \le i \le n)$. Thus, the condition $\bigcap_i P_i = 0$ implies that M satisfies the min \mathcal{L}_2 - π condition.

(iii) \Rightarrow (i). Because M satisfies the min \mathcal{L}_{2} - π condition and Soc(M) is essential, no minimal \mathcal{L}_{2} -prime submodule of M contains Soc(M). It follows that Soc(M/P) is non-zero for every minimal \mathcal{L}_{2} -prime submodule P. Now let Soc(M) $\neq M$. Because M is \mathcal{L}_{2} -Noetherian, Soc(M) lies in a submodule N of M such that N is maximal among all proper fully invariant submodules of M. By Proposition 2.5, N is an \mathcal{L}_{2} -prime submodule of M. Hence, by Propositions 2.1, N contains a minimal \mathcal{L}_{2} prime submodule P and so M/P is a homogeneous semisimple module by Theorem 2.4. It follows that P = N. But then P containing Soc(M) must be an essential submodule of M, a contradiction. Therefore Soc(M) = M.

Remark 2.8. Let R be a right Noetherian ring such that $Soc(R_R)$ is an essential right ideal of R. Then by [3], R is an Artinian ring if $Soc(R_R) \subseteq Soc(_RR)$. But in fact, Theorem 2.7 shows that R is a semisimple Artinian ring if R satisfies the right min- π condition.

3. Modules with κ -dimension

In [15], it is proved that if ${}_{S}M_{R}$ is a bimodule such that ${}_{S}M$ is finitely generated and M/N has the same Krull dimension as a left S- and as a right R-module for every sub-bimodule N of M, then the Krull dimension of M_{R} is equal to that of a suitable prime factor module. Generally, if M_{R} is an \mathcal{L}_{2} -Noetherian module with Krull dimension, there does not exist a ring S such that M becomes a left S-, right R-bimodule with the mentioned properties, see example 2.6(ii). Motivated by [15], we show that the computation of κ -dimension of an \mathcal{L}_{2} -Noetherian module M (if it exists) reduces to that of some prime factor module. This generalizes a well known result that states if R is a right Noetherian ring then k.dim $(R_{R}) =$ Max{k.dim $(R/I_{1}), \dots, k.dim(R/I_{n})$ } where I_{1}, \dots, I_{n} are all minimal prime ideals of R, see for example [5, Proposition, 15.5].

Theorem 3.1. Let M be a non-zero \mathcal{L}_2 -Noetherian κ -dimensional R-module. Then M has only a finite number minimal \mathcal{L}_2 -prime fully invariant submodules P_1, \dots, P_n such that $\kappa(M) = Max\{\kappa(M/P_1), \dots, \kappa(M/P_n)\} = \kappa(M/MI)$ for some minimal prime ideal I of R.

Proof. Let $\mathcal{A} = \{L \leq M \mid L \text{ is proper fully invariant and } \kappa(M) = \kappa(M/L)\}$. Clearly, \mathcal{A} is a non-empty set. Let $P = \text{Max } \mathcal{A}$. We claim that P is an \mathcal{L}_2 -prime submodule of M. Suppose that $W_1 \star W_2 \subseteq P$ for some $W_1, W_2 \in \mathcal{L}_2(M)$. We shall show that $W_1 \subseteq P$ or $W_2 \subseteq P$. Let $C_1 = W_1 + P$ and $C_2 = W_2 + P$. If $C_2 = P$ then clearly $W_2 \subseteq P$ and if $C_2 = M$ then $W_1 = \text{Hom}_R(M, W_1)M = \text{Hom}_R(M, W_1)(W_2 + P) \subseteq P$. Thus, suppose that $P < C_2 < M$. Hence $\kappa(M) > \kappa(M/C_2)$ by maximality of P. By hypothesis, there exist $n \geq 1$ and a surjective homomorphism $\varphi : M^{(n)} \to W_1$. Because $\text{Hom}_R(M, W_1)C_2 \subseteq P$, the map φ induces a surjective homomorphism $\alpha : M^{(n)}/C_2^{(n)} \to C_1/P$ such that $\alpha(\{m_i\}_{i=1}^n + C_2^{(n)}) = \sum_{i=1}^n \varphi \iota_i(m_i)$ where $\iota_i : M \to M^{(n)}$ $(1 \leq i \leq n)$ are the canonical injections. It follows that $\kappa(M/C_2) = \kappa([M/C_2]^{(n)}) \geq \kappa(C_1/P)$. Consequently, $\kappa(M/P) = \kappa(M) > \kappa(C_1/P)$ Thus $M \neq C_1$ and since $\kappa(M/P) \in \{\kappa(C_1/P), \kappa[(M/P)/(C_1/P)]$, we must have $\kappa(M/P) = \kappa(M/C_1)$. This implies that $C_1 = P$ by maximality of P. Thus $W_1 \subseteq P$, as claimed.

Now by Proposition 2.1(i), P contains a minimal \mathcal{L}_2 -prime submodule P_1 and by Proposition 2.2(ii), P_1 is a fully invariant submodule of M. Hence M/P_1 is a prime R-module by Proposition 2.1(ii). It follows that the ideal $A := \operatorname{ann}_R(M/P_1)$ is a prime ideal of R. Let I be a minimal prime ideal of R contained in A. Thus $\kappa(M) \geq \kappa(M/MI) \geq \kappa(M/P_1) \geq \kappa(M/P) = \kappa(M)$. The proof is now completed by Proposition 2.2(ii).

We now give a number of applications of Theorem 3.1. A submodule N of a module M_R is called *irreducible* (resp. *prime*) if (M/N) is a uniform (resp. prime) R-module. Also M_R is called *finitely annihilated* if there exist elements $m_i \in M$ $(1 \le i \le n)$ such that $A := \operatorname{ann}_R(M) = \bigcap_{i=1}^n \operatorname{ann}_R(m_i)$, equivalently R/Aembeds in $M_R^{(n)}$.

Proposition 3.2. Let M be an \mathcal{L}_2 -Noetherian R-module with Krull dimension. (i) If every irreducible prime submodule of M_R is maximal, then M_R has finite length. The converse is true if M_R is finitely annihilated. (ii) If M_R is quasi-projective then M_R has finite length if and only if Soc(M/P) is non-zero for every minimal \mathcal{L}_2 -prime submodule P of M.

Proof. (i) Let P be a minimal \mathcal{L}_2 -prime submodule of M. Because M has Krull dimension, V := M/P has finite uniform dimension [12, Lemma 6.2.6]. Also by Proposition 2.1, V is a prime module. Thus, by [14, Corollary 2.4], $0 = N_1 \cap \cdots \cap N_n$ for some positive integer n and irreducible prime submodules $N_i(1 \le i \le n)$ of V. Clearly V embeds in the module $(V/N_1) \oplus \cdots (V/N_n)$. It follows that k.dim(V) = k.dim (V/N_j) for some N_j . Thus k.dim(V) = 0 by our assumption. Hence M_R is Artinian by Theorem 3.1. On the other hand, M has also Noetherian dimension by [10, Corollaire 6]. Thus a similar argument shows that M_R is Noetherian. Hence M_R has finite length.

Conversely, suppose that M_R is finitely annihilated with finite length and N is an irreducible prime submodule of M_R . Let $I = \operatorname{ann}_R(M/N)$ and $A = \operatorname{ann}_R(M)$. Then I is a prime ideal of R and R/A is an Artinian ring. Since $A \subseteq I$, R/I is a semisimple Artinian ring. It follows that M/N is a simple R-module. Thus N is maximal.

(ii) One direction is clear. Conversely, let P be any minimal \mathcal{L}_2 -prime submodule of M. By hypothesis, $\operatorname{Soc}(M/P)$ is non-zero and finitely generated. Hence, M/P is a semisimple Artinian R-module with finite length by Theorem 2.4. Thus result is now obtained by Theorem 3.1.

A well known result of Lambek and Michler Theorem [9, Theorem 3.6], can be obtained as a corollary of Proposition 3.2.

Corollary 3.3. A right Noetherian ring R is right Artinian if and only if every irreducible prime right ideal of R is maximal.

Proof. Apply Proposition 3.2(i) for M = R.

A ring R is said to be *right semi-Artinian* if every non-zero factor ring of R has a non-zero right socle.

Corollary 3.4. Over a right semi-Artinian ring, a quasi-projective \mathcal{L}_2 -Noetherian module has Krull dimension if and only if it has finite length.

Proof. Apply Proposition 3.2(ii).

We now state further conclusions when the base ring is either commutative or hereditary.

Corollary 3.5. Let R be a commutative ring and M_R finitely generate fully invariant submodules. Then M_R has finite length if and only if M_R is finitely generated with Krull dimension and every irreducible prime submodule of M is maximal.

Proof. If M_R is finitely generated and fully invariant submodules are finitely generated by M, we can conclude that M is \mathcal{L}_2 -Noetherian. Also, M_R is finitely annihilated because R is commutative. Thus, the result is proved by Proposition 3.2(i).

Corollary 3.6. Let M_R be projective and R be a commutative ring. Then M_R has finite length if M_R has Krull dimension, every fully invariant submodule is finitely generated and every irreducible prime submodule of M is maximal.

Proof. Since M_R is finitely generated, it is a generator in Mod- $R/\operatorname{ann}_R(M)$ [16, 18.11] and so every fully invariant submodule is (finitely) generated by M. The result is now obtained by Corollary 3.5.

The following result may be compared with Theorem 2.7.

Proposition 3.7. Let M_R be a quasi-projective \mathcal{L}_2 -Noetherian R-module with Krull dimension. If R is a hereditary Noetherian ring, then M_R has finite length if and only if Soc(M) is an essential submodule of M.

Proof. Let $\operatorname{Soc}(M)$ be an essential submodule of M and let P be a minimal \mathcal{L}_2 prime submodule of M. In view of Proposition 3.2(ii), we shall show that $\operatorname{Soc}(M/P)$ is non-zero. If $\operatorname{Soc}(M) \not\subseteq P$ then clearly $\operatorname{Soc}(M/P) \neq 0$ and if $\operatorname{Soc}(M) \subseteq P$ then $(M/P)_R$ being singular has a non-zero socle by [12, Proposition 5.4.5, page 150]. \Box

Proposition 3.8. Let R be a right hereditary ring.

(i) An \mathcal{L}_2 -Noetherian R-module M is injective if M/P is injective for any minimal \mathcal{L}_2 -prime submodule P of M.

(ii) If every two sided ideal of R is finitely generated as a right ideal and $(R/P)_R$ is injective for every minimal prime ideal P, then R is a semisimple Artinian ring.

Proof. (i) Because R is right hereditary, every R-module has injective dimension 1 or 0. It follows that $\kappa : \text{Mod-}R \to \{0,1\}$ is a dimension map where $\kappa(M)$ means the injective dimension of M_R . Thus, our assumption with Theorem 3.1 imply that

 M_R is injective.

(ii) By hypothesis and part (i), R is a right hereditary right self injective ring. Thus R is a semisimple ring by [4, Corollary 7.15].

Let M be an R-module. If M is $M^{(\Lambda)}$ -projective for every index set Λ , then we say that M is \sum -projective. The following Lemma is needed.

Lemma 3.9. Let M_R be \sum -projective and P be maximal among all proper fully invariant submodule of M. Then P lies in a maximal submodule of M

Proof. Let L = M/P and L has no maximal submodule (i.e. J(L) = L). Let $x \in M \setminus P, W = xR + P$ and K = W/P. By hypothesis, Tr(K, L) = L, hence there exist a set Λ and surjective homomorphism $\varphi : K^{(\Lambda)} \to L$. Because M is $M^{(\Lambda)}$ -projective and $K^{(\Lambda)} \simeq W^{(\Lambda)}/P^{(\Lambda)}$, M is also $K^{(\Lambda)}$ -projective [16, 18.2]. Hence, there exists $h: M \to K^{(\Lambda)}$ such that $\varphi h = p$ where $p: M \to L$ is the canonical projection. Again, by hypothesis, there exists $\bar{h}: M \to W^{(\Lambda)}$ such that $\pi \bar{h} = h$ where $\pi : W^{(\Lambda)} \to K^{(\Lambda)}$ is the natural projection. Because P is fully invariant, $\forall \lambda \in \Lambda, \ \pi_{\lambda} \overline{h}(P) \subseteq P$ where $\pi_{\lambda} : W^{(\Lambda)} \to W$ are canonical projections. Thus $\bar{h}(P) \subseteq P^{(\Lambda)} = \ker(\pi)$. It follows that h(P) = 0. Now $h(xR) \subseteq K^{(A)}$ for some finite subset $A \subseteq \Lambda$. Define $\theta : L \to L$ by $\theta(m+P) = \varphi[\pi_A(h(m))]$ where $\pi_A : K^{(\Lambda)} \to K^{(A)}$ is the canonical projection. Thus θ is an element of $\operatorname{End}_R(L)$ such that $\theta(L)$ is contained in the finitely generated (proper) submodule $\varphi(K^{(A)}) \subseteq L$. It follows that the image of θ is a small submodule of L and hence θ belongs to the Jacobson radical of $\operatorname{End}_R(L)$ [16, 22.2]. Consequently (1 - θ) is a one to one map. On the other hand, $\forall w \in W$, $h(w) \in K^{(A)}$ and so $\theta(w+P) =$ $\varphi(h(w)) = p(w) = w + P$. Hence $(1 - \theta)(K) = 0$, a contradiction.

A well known result due to Ginn and Moss states that a Noetherian ring whose right socle is essential as a right ideal is (right) Artinian [5, Theorem 8.16]. Using this result, we offer a module theoretic version of it in Corollary 3.11. An *R*-module M is said to be *retractable* if $\text{Hom}_R(M, N) \neq 0$ for all $0 \neq N \leq M_R$.

Theorem 3.10. Let M_R be a \sum -projective retractable module such that it finitely generates fully invariant submodules. Then the following statements are equivalent. (i) M_R has Krull dimension, $End_R(M)$ is a Noetherian ring and Soc(M) is an essential submodule of M.

(ii) $End_R(M)$ is a Artinian ring and M_R has finite length.

Proof. We only prove, (i) \Rightarrow (ii). Let $S = \text{End}_R(M)$. By [7, Propositions 2.1(b), 2.4], Soc(S_S) is an essential right ideal of S and so by [5, Theorem 8.16], S is an

Artinian ring. On the other hand, by [16, 18.4(3)], $I = \text{Hom}_R(M, IM)$ for every (right) ideal of S and $N = \text{Hom}_R(M, N)M$ for every $N \in \mathcal{L}_2(M)$ by our assumption. This yields a one-to-one order-preserving correspondence between $\mathcal{L}_2(M)$ and $\mathcal{L}_2(S)$. Consequently, M_R is \mathcal{L}_2 -Noetherian and \mathcal{L}_2 -prime submodules of M correspond to prime ideals of S. Because S is Artinian, we can conclude that M/Phas no non-trivial fully invariant submodules where P is an \mathcal{L}_2 -prime submodule. Hence, the Jacobson radical of $(M/P)_R$ is zero by Lemma 3.9. It follows that the quasi-projective R-module M/P is retractable [4, 3.4]. Therefore, $\text{Soc}(M/P) \neq 0$ by [7, Proposition 2.4(b)]. The proof is now completed by Proposition 3.2(ii). \Box

Corollary 3.11. Let M_R be quasi-projective retractable with $S = End_R(M)$. If Soc(M) is essential in M_R and the bimodule ${}_SM_R$ is Noetherian on each side, then M_R is Artinian.

Proof. By hypothesis, $\operatorname{Hom}_R(M, IM) = I$ for every right ideal of $\operatorname{End}_R(M)$. It follows that $\operatorname{End}_R(M)$ is a right Noetherian ring. Also, since M_R is finitely generated and M is a faithful left S-module, S embedded in ${}_SM$ and so it is a left Noetherian ring. The result is now obtained by Theorem 3.10.

Acknowledgment. The authors would like to thank the referee for the valuable suggestions and comments.

References

- T. Albu and P. F. Smith, Dual Krull dimension and duality, Rocky Mountain J. Math., 29(4) (1999), 1153–1165.
- [2] L. Bican, P. Jambor, T. Kepka and P. Němec, Prime and coprime modules, Fund. Math., 57 (1980), 33–45.
- J. Chen, N. Ding and M. F. Yousif, On Noetherian rings with essential socle, J. Aust. Math. Soc., 76(1)(2004), 39–49.
- [4] N. V. Dung, D. V. Huynh, P. F. Smith and R. Wisbauer, Extending Modules, Longman, Harlow, 1994.
- [5] K. R. Goodearl and R. B. Warfield, Jr., An Introduction to Noncommutative Noetherian Rings, Second Edition, London Mathematical Society Student Texts, Vol. 16, Cambridge University Press, Cambridge, 2004.
- [6] A. Haghany and M. R. Vedadi, Modules whose injective endomorphisms are essential, J. Algebra, 243 (2001), 765–779.
- [7] A. Haghany and M. R. Vedadi, Study of semi-projective retractable modules, Algebra Colloq., 14 (2007), 489–496.

M. R. VEDADI

- [8] O. A. S. Karamzadeh and N. Shirali, On the countability of Noetherian dimension of modules, Comm. Algebra, 32(10) (2004), 4073–4083.
- [9] J. Lambek and G. Michler, The torsion theory at a prime ideal of a right Noetherian ring, J. Algebra, 25 (1973) 364–389.
- [10] B. Lemonnier, Deviation des ensembless et groupes Abeliens Totalement Ordonnes, Bull. Sci. Math., 96 (1972) 289–303.
- [11] C. Lomp, Prime elements in partially ordered groupoids applied to modules and Hopf algebra actions, J. Algebra Appl., 4(1) (2005), 77–97.
- [12] J. C. McConnell and J. C. Robson, Noncommutative Noetherian Rings, Wiley-Interscience, New York, 1987.
- [13] A. Ç. Özcan, A. Harmanci and P. F. Smith, *Duo modules*, Glasg. Math. J., 48(3) (2006), 533–545.
- P. F. Smith, Radical submodules and uniform dimension of modules, Turkish J. Math., 28(3) (2004), 255–270.
- [15] P. F. Smith and A. R. Woodward, Krull dimension of bimodules, J. Algebra, 310(1) (2007), 405–412.
- [16] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Reading, Philadelphia, 1991.

M. R. Vedadi

Department of Mathematical Sciences Isfahan University of Technology Isfahan, 84156-83111, Iran e-mail: mrvedadi@cc.iut.ac.ir