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Abstract. We introduce a map κ that generalizes Krull and Noetherian di-

mensions. If MR finitely generates all fully invariant submodules and has

acc on them, there are only a finite number of minimal L2-prime submodules

Pi(1 ≤ i ≤ n) and when defined, κ(M) = κ(M/Pj) for some j. Here, each

M/Pi is a prime R-module, and in particular, M has finite length if every

irreducible prime submodule of M is maximal. Quasi-projective L2-prime R-

module with non-zero socle are investigated and some applications are then

given when κ(M) means the Krull dimension or the injective dimension.
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1. Introduction

Throughout rings will have unit elements and modules will be right unitary.

Let R be a ring. A non-empty class of R-modules is called weak hereditary if it

is closed under homogeneous finite direct sums, homomorphic images and taking

submodules. A map κ from a weak hereditary class of R-modules to the set of

all cardinal numbers, is called a dimension map, if κ takes the same value on

finite direct sum of isomorphic modules, with the conditions κ(M/N) ≤ κ(M) ∈
{κ(N), κ(M/N)} for every N ≤ M . An R-module M is called dimensional if it

belongs to the domain of some dimension map κ. In this case, we say that M is

κ-dimensional and κ(M) means the κ-dimension of M . Any module with Krull

dimension (resp. Noetherian dimension) is a κ-dimensional module where κ(M)

means the Krull dimension (resp. Noetherian dimension) of M , see [5, Chapter 15],

[10], [1], [8]. By [10, Corollaire 6], an R-module has Krull dimension if and only

if it has Noetherian dimension. However, there are dimensional R-modules which

have not necessarily Krull dimensions. Defining κ(M) = the injective dimension
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of MR for all M in Mod-R, the class of all R-modules, we obtain a dimension

map κ : Mod-R → {0, 1} if R is a right hereditary ring. Hence, modules over

right hereditary rings are dimensional. More generally, for an arbitrary ring R, let

κ′(M) = -1 if MR has a finite length, otherwise κ′(M) = 1. Then it is easy to

verify that κ′ : Mod-R → {−1, 1} is a dimension map and so all R-modules are

κ′-dimensional. In this paper, it is shown that the computation of κ-dimension

of certain κ-dimensional modules reduces to that of some prime factor modules.

Some applications are then obtained when κ(M) means either Krull dimension or

Noetherian dimension or injective dimension of a module. In [2], a module MR has

been called “ prime ” if N1 ? N2 = 0 implies N1 = 0 or N2 for all submodules N1,

N2 of M where N1?N2 = HomR(M, N1)N2. These prime modules have been called

?-prime modules in [11] where some applications of them are obtained. If P is a

proper submodule of a module MR, we say that P is an L2-prime submodule of M

if W1 ?W2 ⊆ P implies W1 ⊆ P or W2 ⊆ P where W1, W2 belong to L2(M), the set

of all fully invariant submodules of MR. Also, minimal L2-prime submodule means

minimal among all L2-prime submodules of M . If (0) is an L2-prime submodule

of MR then M is called an L2-prime R-module. Clearly, every ?-prime module M

is L2-prime and the converse is true if M is a DUO module in the sense of [13]

(i.e., all of submodules of M are fully invariant). By a prime module MR we mean

the “classical” notion of a prime module, that is, annR(N) = annR(M) for any

0 6= N ≤ M .

We first study some properties of L2-prime submodules of a module and show,

among other things, that a quasi-projective L2-prime module with non-zero socle

is semisimple if it has acc on direct summands (Theorem 2.4). Next, we introduce

L2-Noetherian modules (page 5) and prove that if M is an L2- Noetherian κ-

dimensional R-module, then M has only a finite number of minimal L2-prime fully

invariant submodules P1, · · · , Pn such that κ(M) = Max{κ(M/P1), · · · , κ(M/Pn)}
(Theorem 3.1). In particular, a generalization of Lambek-Michler Theorem [9,

Theorem 3.6] is obtained (Proposition 3.2(i)) and a module theoretic version of

Ginn-Moss Theorem [5, Theorem 8.16] is offered (Corollary 3.11).

Any unexplained terminology, and all the basic results on rings and modules

that are used in the sequel can be found in [12] and [16].
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2. L2-prime submodules

Let K and P be proper submodules of a module MR. We say that P is a minimal

L2-prime submodule over K if P is minimal among all L2-prime submodules which

contain K, in this case, we write K
min≤ P . We begin with the following result.

Proposition 2.1. Let M be a non-zero R-module.

(i) If N is any L2-prime submodule of M then for every K ≤ N there exists an

L2-prime submodule P of M such that K
min≤ P ≤ N .

(ii) If P is a proper fully invariant L2-prime submodule of MR, then M/P is a

prime R-module.

Proof. (i) By Zorn’s Lemma, pick a maximal chain {Ni}i∈I of L2-prime submod-

ules of M such that K ≤ Ni ⊆ N for all i ∈ I. Then N contains the L2-prime

submodule P =
⋂

i Ni of M and also we have K
min≤ P by the maximality of {Ni}i∈I

( to see P is an L2-prime submodule, let W1?W2 ⊆ P for some W1,W2 ∈ L2(M). If

W1,W2 6⊆ P , then there exists i ∈ I such that both W1,W2 6⊆ Ni. But W1?W2 ⊆ Ni

and Ni is L2 prime, a contradiction).

(ii) By [11, Lemma 5.3]. ¤

If MR has acc on fully invariant submodules, we don’t know whether M has an

L2-prime submodule. However, the following result shows that the set of all minimal

L2-prime submodules of M is a finite set. Proposition 2.5 provides examples of

modules with L2-prime submodules.

Proposition 2.2. Let MR be a module with acc on fully invariant submodules.

(i) If N is an L2-prime submodule of M , then N contains an L2-prime fully in-

variant submodule of M .

(ii) The set of all minimal L2-prime submodules of M is a finite set and each

minimal L2-prime submodule is a fully invariant submodule.

Proof. (i) Let K be maximal among all fully invariant submodules of M which

contained in N . Then K is an L2-prime submodule of M . In fact, if there exist

W1,W2 ∈ L2(M) such that W1 ? W2 ⊆ K. Then W1 ? W2 ⊆ N and hence W1 ⊆ N

or W2 ⊆ N . Thus W1 + K = K or W2 + K = K by maximality of K. It follows

that W1 ⊆ K or W2 ⊆ K, proving that K is an L2-prime submodule of M .

(ii) Suppose that M has infinite number of minimal L2-prime submodules and set

A = {L ≤ M | L is proper fully invariant and there exist infinite number of L2-prime

submodule of M which are minimal over L}. Then (0) ∈ A and by hypothesis A
has a maximal member N . Thus N is not an L2-prime submodule of M . It follows
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that there exist W1,W2 ∈ L2(M) such that W1 ? W2 ⊆ N and W1, W2 6⊆ N . Let

C1 = W1 + N and C2 = W2 + N . Because W1 ? W2 ⊆ N , we have {P | N
min≤ P}

⊆ {P | C1

min≤ P} ∪ {P | C2

min≤ P}, but the union is a finite (even the empty)

set by maximality of N , a contradiction. Hence M cannot have infinite number of

minimal L2-prime submodules. The last statement is clear by (i). ¤

Proposition 2.3. Let M be quasi-projective R-module.

(i) Every minimal L2-prime submodule of M is fully invariant.

(ii) A fully invariant submodule P of M is an L2-prime submodule of M if and

only if (M/P )R is an L2-prime module.

Proof. (i) Let N be a minimal L2-prime submodule of M and let P = Rej(M, M/N),

then P is a fully invariant submodule of M and P ⊆ N . We shall show that P

is an L2-prime submodule of M . Let W1 ? W2 ⊆ P for some W1,W2 ∈ L2(M).

Then W1 ? W2 ⊆ N and hence W1 ⊆ N or W2 ⊆ N . On the other hand, because

MR is quasi-projective, Rej(M, M/N) = {m ∈ M | Tm ⊆ N} where T = {f ∈
EndR(M) | f(N) ⊆ N}. Also for each i = 1, 2, Wi ⊆ N implies TWi ⊆ TN ⊆ N .

Therefore, we have W1 ⊆ P or W2 ⊆ P . This shows that P is L2 prime, as desired.

(ii) This is true because for every P ≤ N ≤ MR, the hypothesis implies that M is

N -projective, hence we have HomR(M/P,N/P ) = {F | ∃f : MR → NR such that

F (m + P ) = f(m) + P ∀m ∈ M}. ¤

Theorem 2.4. Let M be a quasi-projective L2-prime R-module with non-zero socle.

If either Soc(M) is finitely generated or M has acc on direct summands then MR

is homogenous semisimple.

Proof. Because M is an L2-prime module, 0 6= K ? L ⊆ K ∩ L, for all non-zero

fully invariant submodules K and L of M . It follows that W := Soc(MR) is a

homogeneous semisimple R-module. Since W ? W 6= 0, there exists f : M → W

such that f(W ) 6= 0. Let W = ⊕Si where {Si}i are isomrphic simple submodules

of M . Then f =
∑

fi where fi : M → Si. Since W 6⊆ ker f =
⋂

ker fi, there exists

fi such that W 6⊆ ker fi. Thus ker fi is a maximal submodule of M which not

essential. It follows that M = Si1⊕L1 for some L1 ≤ MR and simple submodule Si1 .

Suppose that L1 is non-zero and let W1 = Soc(L1). We claim HomR(L1,W1) 6= 0.

If HomR(L1,W1) = 0, then HomR(L1, Si1) = 0. This in turn follows that L1

and hence W1 are fully invariant submodules of M . Thus by the above, W1 =

W ∩L1 is a non-zero fully invariant submodule of M . It follows by hypothesis that

HomR(M, W1)L1 6= 0, a contradiction. Therefore, HomR(L1,W1) 6= 0, as claimed.

Consequently, there exists a simple submodule U of W1 which is homomorphic
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image of L1. Because U ' Si1 and M is quasi-projective, L1 = Si2 ⊕ L2 for some

L2 ≤ L1 and simple submodule Si2 . By hypothesis, this process is stopped (i.e.

Ln = 0 for some n ≥ 1) and so M = Soc(M). ¤

Proposition 2.5. Let M finitely generate fully invariant submodules. If N is

maximal among all proper fully invariant submodules, then N is an L2-prime sub-

module.

Proof. Note that if W1 ? W2 ⊆ N and W2 + N = M for some fully invariants

submodules W1,W2, then W1 = Hom(M, W1)(W2 + N) ⊆ N . ¤

An R-module M is called L2-Noetherian if it finitely generates all of its fully

invariant submodules and has acc on them. Self generator Noetherian modules and

modules without non-trivial fully invariant submodules are clearly L2-Noetherian.

It is easy to verify that the R-module R is L2-Noetherian if and only if every two

sided ideal of R is finitely generated as a right ideal.

Example 2.6. (i) For a non-trivial example of L2-Noetherian modules which are

not Noetherian, consider the Z-module M = Q⊕Z. Then MZ is not Noetherian and

each fully invariant submodule of MZ has the form Q⊕ (nZ) for some n ≥ 0, hence

MZ is L2-Noetherian. This can easily be seen from the fact that EndZ(M) =
[ Q Q

0 Z
]
.

(ii) Let R be a non-Artinian right primitive ring with simple faithful R-module

M . Then there is no ring T such that T MR is a bimodule and T M is Noetherian

(or even T M is finitely generated). Because if T M is finitely generated, then R

embedding in M
(n)
R for some n ≥ 1, is Artinian. Consequently, MR is an L2-

Noetherian such that SM is not Noetherian where S = EndR(M).

It is known that a prime ideal is either a minimal prime ideal or essential as

a right ideal. In [6], a ring R is said to satisfy r.min π-condition if no minimal

prime ideal of R is essential as a right ideal. Generalizing this to module MR, we

say M satisfies min L2-π condition if no minimal L2-prime submodule of M is an

essential submodule. Clearly, L2-prime modules and semisimple modules satisfy

the min L2-π condition. Also, it is well known that every semiprime right Goldie

ring satisfies the r.min π-condition [5, Propositions 6.13, 7.3], however there are

non semiprime rings which satisfy the r.min π-condition [6, Example 3.10]. If M is

a quasi-projective module which satisfies the min L2-π condition and Soc(M) is an

essential submodule of M , then M/P is an L2-prime module with non-zero socle,

for every minimal L2-prime submodule P of M . In view of Theorem 2.4, it is then

not out of place to consider the min L2-π condition.
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Theorem 2.7. Let M be a non-zero quasi-projective L2-Noetherian R-module with

Krull dimension. Then the following statements are equivalent.

(i) M is a semisimple R-module.

(ii) Soc(M) is an essential submodule of M and
⋂

P = 0 where the intersection

runs through the set of minimal L2-prime submodules of M .

(iii) Soc(M) is an essential submodule of M and M satisfies the min L2-π condition.

Proof. (i)⇒(ii). This is true by Proposition 2.3(i) and the fact that fully invariant

submodules of M are its components.

(ii)⇒(iii). By Proposition 2.2, M has only a finite number of minimal L2-prime

submodules Pi(1 ≤ i ≤ n). Thus, the condition
⋂

i Pi = 0 implies that M satisfies

the min L2-π condition.

(iii)⇒(i). Because M satisfies the min L2-π condition and Soc(M) is essential, no

minimal L2-prime submodule of M contains Soc(M). It follows that Soc(M/P ) is

non-zero for every minimal L2-prime submodule P . Now let Soc(M) 6= M . Because

M is L2-Noetherian, Soc(M) lies in a submodule N of M such that N is maximal

among all proper fully invariant submodules of M . By Proposition 2.5, N is an

L2-prime submodule of M . Hence, by Propositions 2.1, N contains a minimal L2-

prime submodule P and so M/P is a homogeneous semisimple module by Theorem

2.4. It follows that P = N . But then P containing Soc(M) must be an essential

submodule of M , a contradiction. Therefore Soc(M) = M . ¤

Remark 2.8. Let R be a right Noetherian ring such that Soc(RR) is an essential

right ideal of R. Then by [3], R is an Artinian ring if Soc(RR) ⊆ Soc(RR). But

in fact, Theorem 2.7 shows that R is a semisimple Artinian ring if R satisfies the

right min-π condition.

3. Modules with κ-dimension

In [15], it is proved that if SMR is a bimodule such that SM is finitely generated

and M/N has the same Krull dimension as a left S- and as a right R-module for

every sub-bimodule N of M , then the Krull dimension of MR is equal to that of a

suitable prime factor module. Generally, if MR is an L2-Noetherian module with

Krull dimension, there does not exist a ring S such that M becomes a left S-,

right R-bimodule with the mentioned properties, see example 2.6(ii). Motivated

by [15], we show that the computation of κ-dimension of an L2-Noetherian module

M ( if it exists) reduces to that of some prime factor module. This generalizes

a well known result that states if R is a right Noetherian ring then k.dim(RR) =

Max{k.dim(R/I1), · · · , k.dim(R/In)} where I1, ..., In are all minimal prime ideals
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of R, see for example [5, Proposition, 15.5].

Theorem 3.1. Let M be a non-zero L2-Noetherian κ-dimensional R-module. Then

M has only a finite number minimal L2-prime fully invariant submodules P1, · · · ,
Pn such that κ(M) = Max{κ(M/P1), · · · , κ(M/Pn)} = κ(M/MI) for some mini-

mal prime ideal I of R.

Proof. Let A = {L ≤ M | L is proper fully invariant and κ(M) = κ(M/L)}.
Clearly, A is a non-empty set. Let P = Max A. We claim that P is an L2-prime

submodule of M . Suppose that W1 ? W2 ⊆ P for some W1,W2 ∈ L2(M). We shall

show that W1 ⊆ P or W2 ⊆ P . Let C1 = W1 +P and C2 = W2 +P . If C2 = P then

clearly W2 ⊆ P and if C2 = M then W1 = HomR(M, W1)M = HomR(M,W1)(W2+

P ) ⊆ P . Thus, suppose that P < C2 < M . Hence κ(M) > κ(M/C2) by maximality

of P . By hypothesis, there exist n ≥ 1 and a surjective homomorphism ϕ : M (n) →
W1. Because HomR(M, W1)C2 ⊆ P , the map ϕ induces a surjective homomorphism

α : M (n)/C
(n)
2 → C1/P such that α({mi}n

i=1 + C
(n)
2 ) =

∑n
i=1 ϕιi(mi) where ιi :

M → M (n) (1 ≤ i ≤ n) are the canonical injections. It follows that κ(M/C2) =

κ([M/C2](n)) ≥ κ(C1/P ). Consequently, κ(M/P ) = κ(M) > κ(C1/P ) Thus M 6=
C1 and since κ(M/P ) ∈ {κ(C1/P ), κ[(M/P )/(C1/P )], we must have κ(M/P ) =

κ(M/C1). This implies that C1 = P by maximality of P . Thus W1 ⊆ P , as

claimed.

Now by Proposition 2.1(i), P contains a minimal L2-prime submodule P1 and

by Proposition 2.2(ii), P1 is a fully invariant submodule of M . Hence M/P1 is a

prime R-module by Proposition 2.1(ii). It follows that the ideal A := annR(M/P1)

is a prime ideal of R. Let I be a minimal prime ideal of R contained in A. Thus

κ(M) ≥ κ(M/MI) ≥ κ(M/P1) ≥ κ(M/P ) = κ(M). The proof is now completed

by Proposition 2.2(ii). ¤

We now give a number of applications of Theorem 3.1. A submodule N of

a module MR is called irreducible (resp. prime) if (M/N) is a uniform (resp.

prime) R-module. Also MR is called finitely annihilated if there exist elements

mi ∈ M (1 ≤ i ≤ n) such that A := annR(M) = ∩n
i=1annR(mi), equivalently R/A

embeds in M
(n)
R .

Proposition 3.2. Let M be an L2-Noetherian R-module with Krull dimension.

(i) If every irreducible prime submodule of MR is maximal, then MR has finite

length. The converse is true if MR is finitely annihilated.
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(ii) If MR is quasi-projective then MR has finite length if and only if Soc(M/P ) is

non-zero for every minimal L2-prime submodule P of M .

Proof. (i) Let P be a minimal L2-prime submodule of M . Because M has Krull

dimension, V := M/P has finite uniform dimension [12, Lemma 6.2.6]. Also by

Proposition 2.1, V is a prime module. Thus, by [14, Corollary 2.4], 0 = N1∩· · ·∩Nn

for some positive integer n and irreducible prime submodules Ni(1 ≤ i ≤ n) of V .

Clearly V embeds in the module (V/N1)⊕ · · · (V/Nn). It follows that k.dim(V ) =

k.dim(V/Nj) for some Nj . Thus k.dim(V ) = 0 by our assumption. Hence MR is

Artinian by Theorem 3.1. On the other hand, M has also Noetherian dimension by

[10, Corollaire 6]. Thus a similar argument shows that MR is Noetherian. Hence

MR has finite length.

Conversely, suppose that MR is finitely annihilated with finite length and N is

an irreducible prime submodule of MR. Let I = annR(M/N) and A = annR(M).

Then I is a prime ideal of R and R/A is an Artinian ring. Since A ⊆ I, R/I is a

semisimple Artinian ring. It follows that M/N is a simple R-module. Thus N is

maximal.

(ii) One direction is clear. Conversely, let P be any minimal L2-prime submodule

of M . By hypothesis, Soc(M/P ) is non-zero and finitely generated. Hence, M/P

is a semisimple Artinian R-module with finite length by Theorem 2.4. Thus result

is now obtained by Theorem 3.1. ¤

A well known result of Lambek and Michler Theorem [9, Theorem 3.6], can be

obtained as a corollary of Proposition 3.2.

Corollary 3.3. A right Noetherian ring R is right Artinian if and only if every

irreducible prime right ideal of R is maximal.

Proof. Apply Proposition 3.2(i) for M = R. ¤

A ring R is said to be right semi-Artinian if every non-zero factor ring of R has

a non-zero right socle.

Corollary 3.4. Over a right semi-Artinian ring, a quasi-projective L2-Noetherian

module has Krull dimension if and only if it has finite length.

Proof. Apply Proposition 3.2(ii). ¤
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We now state further conclusions when the base ring is either commutative or

hereditary.

Corollary 3.5. Let R be a commutative ring and MR finitely generate fully invari-

ant submodules. Then MR has finite length if and only if MR is finitely generated

with Krull dimension and every irreducible prime submodule of M is maximal.

Proof. If MR is finitely generated and fully invariant submodules are finitely gen-

erated by M , we can conclude that M is L2-Noetherian. Also, MR is finitely

annihilated because R is commutative. Thus, the result is proved by Proposition

3.2(i). ¤

Corollary 3.6. Let MR be projective and R be a commutative ring. Then MR has

finite length if MR has Krull dimension, every fully invariant submodule is finitely

generated and every irreducible prime submodule of M is maximal.

Proof. Since MR is finitely generated, it is a generator in Mod-R/annR(M) [16,

18.11] and so every fully invariant submodule is (finitely) generated by M . The

result is now obtained by Corollary 3.5. ¤

The following result may be compared with Theorem 2.7.

Proposition 3.7. Let MR be a quasi-projective L2-Noetherian R-module with Krull

dimension. If R is a hereditary Noetherian ring, then MR has finite length if and

only if Soc(M) is an essential submodule of M .

Proof. Let Soc(M) be an essential submodule of M and let P be a minimal L2-

prime submodule of M . In view of Proposition 3.2(ii), we shall show that Soc(M/P )

is non-zero. If Soc(M) 6⊆ P then clearly Soc(M/P ) 6= 0 and if Soc(M) ⊆ P then

(M/P )R being singular has a non-zero socle by [12, Proposition 5.4.5, page 150]. ¤

Proposition 3.8. Let R be a right hereditary ring.

(i) An L2-Noetherian R-module M is injective if M/P is injective for any minimal

L2-prime submodule P of M .

(ii) If every two sided ideal of R is finitely generated as a right ideal and (R/P )R

is injective for every minimal prime ideal P , then R is a semisimple Artinian ring.

Proof. (i) Because R is right hereditary, every R-module has injective dimension

1 or 0. It follows that κ :Mod-R → {0, 1} is a dimension map where κ(M) means

the injective dimension of MR. Thus, our assumption with Theorem 3.1 imply that
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MR is injective.

(ii) By hypothesis and part (i), R is a right hereditary right self injective ring. Thus

R is a semisimple ring by [4, Corollary 7.15]. ¤

Let M be an R-module. If M is M (Λ)-projective for every index set Λ, then we

say that M is
∑

-projective. The following Lemma is needed.

Lemma 3.9. Let MR be
∑

-projective and P be maximal among all proper fully

invariant submodule of M . Then P lies in a maximal submodule of M

Proof. Let L = M/P and L has no maximal submodule (i.e. J(L) = L). Let

x ∈ M \ P , W = xR + P and K = W/P . By hypothesis, Tr(K, L) = L, hence

there exist a set Λ and surjective homomorphism ϕ : K(Λ) → L. Because M

is M (Λ)-projective and K(Λ) ' W (Λ)/P (Λ), M is also K(Λ)-projective [16, 18.2].

Hence, there exists h : M → K(Λ) such that ϕh = p where p : M → L is the

canonical projection. Again, by hypothesis, there exists h̄ : M → W (Λ) such that

πh̄ = h where π : W (Λ) → K(Λ) is the natural projection. Because P is fully

invariant, ∀λ ∈ Λ, πλh̄(P ) ⊆ P where πλ : W (Λ) → W are canonical projections.

Thus h̄(P ) ⊆ P (Λ) = ker(π). It follows that h(P ) = 0. Now h(xR) ⊆ K(A)

for some finite subset A ⊆ Λ. Define θ : L → L by θ(m + P ) = ϕ[πA(h(m))]

where πA : K(Λ) → K(A) is the canonical projection. Thus θ is an element of

EndR(L) such that θ(L) is contained in the finitely generated (proper) submodule

ϕ(K(A)) ⊆ L. It follows that the image of θ is a small submodule of L and hence

θ belongs to the Jacobson radical of EndR(L) [16, 22.2]. Consequently (1 - θ) is a

one to one map. On the other hand, ∀ w ∈ W , h(w) ∈ K(A) and so θ(w + P ) =

ϕ(h(w)) = p(w) = w + P . Hence (1− θ)(K) = 0, a contradiction. ¤

A well known result due to Ginn and Moss states that a Noetherian ring whose

right socle is essential as a right ideal is (right) Artinian [5, Theorem 8.16]. Using

this result, we offer a module theoretic version of it in Corollary 3.11. An R-module

M is said to be retractable if HomR(M,N) 6= 0 for all 0 6= N ≤ MR.

Theorem 3.10. Let MR be a
∑

-projective retractable module such that it finitely

generates fully invariant submodules. Then the following statements are equivalent.

(i) MR has Krull dimension, EndR(M) is a Noetherian ring and Soc(M) is an

essential submodule of M .

(ii) EndR(M) is a Artinian ring and MR has finite length.

Proof. We only prove, (i)⇒(ii). Let S = EndR(M). By [7, Propositions 2.1(b),

2.4], Soc(SS) is an essential right ideal of S and so by [5, Theorem 8.16], S is an
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Artinian ring. On the other hand, by [16, 18.4(3)], I = HomR(M, IM) for every

(right) ideal of S and N = HomR(M,N)M for every N ∈ L2(M) by our assump-

tion. This yields a one-to-one order-preserving correspondence between L2(M) and

L2(S). Consequently, MR is L2-Noetherian and L2-prime submodules of M cor-

respond to prime ideals of S. Because S is Artinian, we can conclude that M/P

has no non-trivial fully invariant submodules where P is an L2-prime submodule.

Hence, the Jacobson radical of (M/P )R is zero by Lemma 3.9. It follows that the

quasi-projective R-module M/P is retractable [4, 3.4]. Therefore, Soc(M/P ) 6= 0

by [7, Proposition 2.4(b)]. The proof is now completed by Proposition 3.2(ii). ¤

Corollary 3.11. Let MR be quasi-projective retractable with S = EndR(M). If

Soc(M) is essential in MR and the bimodule SMR is Noetherian on each side, then

MR is Artinian.

Proof. By hypothesis, HomR(M, IM) = I for every right ideal of EndR(M). It

follows that EndR(M) is a right Noetherian ring. Also, since MR is finitely gen-

erated and M is a faithful left S-module, S embedded in SM and so it is a left

Noetherian ring. The result is now obtained by Theorem 3.10. ¤
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