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Abstract. We consider naturally generated subgroups En of Brn. On the

geometric side we show that En is the bifurcation braid monodromy group of

the family of plane polynomial coverings of degree 3. On the algebraic side

there is the Hurwitz action of the braid group Brn on the n-fold Cartesian

product Brn
3 of Br3 = 〈a, b | aba = bab〉. The stabiliser of finite alternating

sequences of its generators a, b is expected to be given by En. We are able to

prove this conjecture in a few cases and apply our results to give character-

isations in the most basic instances of the paths realised by degenerations in

families of polynomials as defined by Donaldson [7].
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1. Introduction

The braid group Brn on n strands has first been considered by A. Hurwitz [9]
and E. Artin [1]. Since then it has lead a prolific life in such diverse areas of
mathematics as topology, combinatorics and algebraic geometry.

In his original approach A. Hurwitz investigates the action of Brn on the n-fold
Cartesian product of a symmetric group. This so called Hurwitz action can formally
be defined on Gn for any group G and is determined by the action of the standard
generators

σi(g1, ..., gn) = (g1, ..., gi−1, gigi+1g
−1

i , gi, gi+2, ..., gn)

With the band generators σij = σiσi+1 · · ·σj−1(σiσi+1 · · ·σj−2)−1, see [2], we
define a subgroup of Brn,

En :=

〈
eij := σ

mij

ij , 1 ≤ i < j ≤ n,mij =

{
1 if i ≡ j (2)
3 if i 6≡ j (2)

〉
,

which we want to relate to the Hurwitz action in case G = Br3 on one hand and to
a geometric monodromy problem on the other hand.

This paper is supported by the Forschergruppe 790 of the DFG (Deutsche Forschergemeinschaft).
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The Hurwitz action for G a Coxeter group or an Artin group has been studied a
lot: Given a symmetric matrix M of positive integers mij there are the associated
Coxeter group and Artin group

C = CM := 〈s1, ..., sn | s2
i = (sisj)mij = 1〉,

A = AM := 〈a1, ..., an | aiajai...︸ ︷︷ ︸
mij factors

= ajaiaj ...︸ ︷︷ ︸
mij factors

〉.

The distinguished element C = (s1, ..., sn) ∈ Cn is fixed under the Hurwitz action
of

EM :=
〈
eij := σ

mij

ij , 1 ≤ i < j ≤ n
〉 ⊂ Brn .

In several important cases it is shown to equal the Hurwitz stabiliser group

SC := {β ∈ Brn |β(s1, ..., sn) = (s1, ..., sn)},
see [3,10,4,6], and presentations have been given in [12]. It is an immediate corollary
[10], that in these cases EM is also the Hurwitz stabiliser SA of the distinguished
element A = (a1, ..., an) ∈ An.

But there are examples of Coxeter systems which are sufficiently redundant, ie.
mij = 1 for sufficiently many pairs ij, such that EM is a proper subgroup of SC ,
see [3] and Section 2.

In this article we concentrate on the case of the matrices

Mn :=
(
mij

)
1≤i,j≤n

, with mij =

{
3 if i 6≡ j mod 2
1 if i ≡ j mod 2

In all cases we can handle either E = SA ⊆ SC or E ⊆ SA ⊂ SC , so one may
venture to hope that E = SA holds in general.

There is always a geometric flavour to these results: Birman and Wajnryb [3]
applied their results to get a presentation for the mapping class group of surfaces
with at most one boundary component. The stabilisers of the classical Coxeter
systems for the finite Coxeter groups investigated by Catanese/Wajnryb (type A)
and Dörner (type ADE) have been shown to be the fundamental groups of the
bifurcation complements of the corresponding simple singularities [13].

On the geometric side our research was initiated by the article [7] in ’Mathe-
matics: frontiers and perspectives’.

Given a plane polynomial g1 = g1(x, y) the projection to the x-axis defines a
function f1 on the plane curve C1 defined by g1. Suppose now C1 is smooth and
f1 simply branched, i.e. f1 is a Morse function with singular values b0, ..., bn ∈ C,
which are called the branch points. Then Donaldson asks for the set of paths which
can be realised by deformations of g1, [7, p.56]. We call such paths vanishing arcs,
since we have the following characterisation:
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An embedded path γ with endpoints b0, b1 and disjoint from the branch set
otherwise is a vanishing arc, if there is a smooth family gt, t ∈ [0, 1] of polynomials
and a homotopy H = H(s, t) such that

i) the curves Ct = g−1
t (0) are smooth and ft is simply branched for t > 0,

ii) the curve C0 is smooth except for a single ordinary double point P and f0

is simply branched on the smooth locus and injective on its critical points,
iii) H is a homotopy from γ to the constant map to f0(P ) such that Ht meets

the branch set of ft in Ht({0, 1}).
So a vanishing arc can be contracted to a point relative to the branch locus.

The geometric content of such results is addressed in the second part of this
article, where we show how Hurwitz stablisers occur naturally in the study of Don-
aldson’s question (see also [11]):

To handle degenerations of plane polynomials we choose the set up of polyno-
mial covers introduced by Hansen [8] and define the notion of bifurcation braid
monodromy. The paper closes with a characterisation of sets of vanishing arcs in
the spirit of [7].

2. Stabilisers of Coxeter systems

First we consider the Hurwitz action on Cartesian products of the symmetric
group S3 on three elements. The Coxeter presentation for S3 is generated by
transpositions s and t:

S3
∼= C := 〈s, t | s2 = t2 = (st)3 = 1〉.

Any non-constant n-tuple (s1, ..., sn) with si ∈ {s, t} is not only an element in Cn

but also a Coxeter system with Coxeter group C and matrix

M :=
(
mij

)
1≤i,j≤n

, with mij =

{
3 if si 6= sj

1 if si = sj

For some of these Coxeter systems the stabiliser group can be found with results
of Birman and Wajnryb.

Lemma 2.1. The stabiliser group of the Coxeter systems (s, t, t, ..., t) of length
n ≥ 3 and (s, s, t, ..., t) of length n ≥ 4 can be given by

SC = 〈σ3
1 , σ2, ..., σn−1, 〉, n = 3, 4,

SC = 〈σ3
1 , σ2, ..., σn−1, (σ4)σ3σ2σ

2
1σ2σ

2
3σ2σ1〉, n ≥ 5,

respectively

SC = 〈σ1, σ
3
2 , σ3, ..., σn−1, (σ3)σ

−1

2 σ−2
1 σ2

2σ1〉, n = 4, 5,

SC = 〈σ1, σ
3
2 , σ3, ..., σn−1, (σ5)σ4σ3σ

2
2σ3σ

2
4σ3σ2, (σ3)σ

−1

2 σ−2
1 σ2

2σ1〉, n ≥ 6.
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Remark: Here and elsewhere we use (σ)β to denote the braid β
−1

σβ obtained by
the action of a braid β on a braid σ by conjugation on the right with the convention
that braid multiplication preceeds braid conjugation.

Proof. The first claim is actually proved in [3]. In the second case a generating
set has been given in [14, Thm. 5] which is the same as ours except that it contains
(σ1)σ2σ

2
3σ2 instead of (σ3)σ

−1

2 σ−2
1 σ2

2σ1. But they are equal up to conjugation by
σ3

2σ3σ
3
2 , hence our second claim is also true. ¤

Starting from this lemma we can get the stabiliser groups of the alternating
Coxeter systems Cn := (s, t, s, t, ...) ∈ Cn with matrix

Mn :=
(
mij

)
1≤i,j≤n

, with mij =

{
3 if i 6≡ j mod 2
1 if i ≡ j mod 2

Lemma 2.2. The stabiliser group SCn
of an alternating Coxeter systems of length n

is conjugated to the stabiliser group of a Coxeter system (s, t, t, ..., t) or (s, s, t, ..., t)
of equal length. For small n we have:

S(s,t,s) = σ
−1

1 S(s,t,t) σ1

S(s,t,s,t) = σ
−1

2 σ1 S(s,t,t,t) σ
−1

1 σ2

S(s,t,s,t,s) = σ
−1

3 σ2σ
−1

1 S(s,t,t,t,t) σ1σ
−1

2 σ3

S(s,t,s,t,s,t) = σ
−1

4 σ3σ
−1

2 S(s,s,t,t,t,t) σ2σ
−1

3 σ4

Proof. The general claim is immediate from the observation that the alternating
system is in the same Brn orbit as at least one of the reference systems.

For the second claim we compute the action of the conjugating element on the
alternating system of two transpositions s, t in the permutation group of 3 elements,
with r denoting the third transposition.

σ1(s, t, s) = (r, s, s)

σ
−1

1 σ2(s, t, s, t) = σ
−1

1 (s, r, t, t)
= (r, t, t, t)

σ1σ
−1

2 σ3(s, t, s, t, s) = σ1σ
−1

2 (s, t, r, s, s)
= σ1(s, r, s, s, s)
= (t, s, s, s, s)

σ2σ
−1

3 σ4(s, t, s, t, s, t) = σ2σ
−1

3 (s, t, s, r, t, t)
= σ2(s, t, r, t, t, t)
= (s, s, t, t, t, t)

Surely the stabiliser does not depend on the choice of two non-commuting trans-
positions and hence we are done. ¤
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Having said that En := EMn
⊆ SCn

we want to give a small set of generators now.

Lemma 2.3. The group En is generated by σ3
1 , σi+1σiσ

−1

i+1, i = 1, ..., n− 2.

Proof. First note that the given generators are just e12, ei,i+2, i = 1, ..., n− 2. For
the remaining eij we have the following relations:

eij = (ei,i+2)e
−1

i+2,i+4e
−1

i+4,i+6...e
−1

j−2,j , i ≡ j mod 2,

eij = (e12)e13e24...ei−1,i+1e
−1

i+1,i+3e
−1

i+3,i+5...e
−1

j−2,j , i 6≡ j mod 2. ¤

In fact we can choose two additional stabilisers to generate the stabiliser group
SCn

. Our choice τ1 = (σ1)σ2σ
−1

3 σ4, τ2 = (σ2)σ3σ
−1

4 σ5 is motivated by their action
on Artin systems, see Lemma 3.2.

Lemma 2.4. The stabiliser groups SCn of the alternating Coxeter systems of lengths
n = 3, 4, 5, 6 can be given as follows:

S(s,t,s) = E3, S(s,t,s,t) = E4,

S(s,t,s,t,s) = 〈E5, τ1〉, S(s,t,s,t,s,t) = 〈E6, τ1, τ2〉.

Proof. To show that τ1 belongs to the stabiliser of C5, respectively that τ1, τ2

belong to the stabiliser of C6, it obviously suffices to show τ1 ∈ SC5 :

σ
−1

4 σ3σ
−1

2 σ1σ2σ
−1

3 σ4 (s, t, s, t, s)
= σ

−1

4 σ3σ
−1

2 σ1σ2σ
−1

3 (s, t, s, r, t)
= σ

−1

4 σ3σ
−1

2 σ1σ2 (s, t, r, t, t)
= σ

−1

4 σ3σ
−1

2 σ1 (s, s, t, t, t)
= σ

−1

4 σ3σ
−1

2 (s, s, t, t, t)
= σ

−1

4 σ3 (s, t, r, t, t)
= σ

−1

4 (s, t, s, r, t)
= (s, t, s, t, s)

So the given groups are shown to be stabilising.
To prove the inverse implication we note that the stabiliser groups are generated

by the following elements which are obtained from generators of Lemma 2.1 using
conjugation as provided by Lemma 2.2:

n = 3 : σ3
1 , (σ2)σ1,

n = 4 : (σ3
1)σ2, (σ2)σ

−1

1 σ2, (σ3)σ2,

n = 5 : (σ3
1)σ

−1

2 σ3, (σ2)σ1σ
−1

2 σ3, (σ3)σ
−1

2 σ3, (σ4)σ3,

(σ4)σ3σ2σ
2
1σ2σ

2
3σ2σ1σ1σ

−1

2 σ3,

n = 6 : (σ1)σ2σ
−1

3 σ4, (σ3
2)σ

−1

3 σ4, (σ3)σ2σ
−1

3 σ4, (σ4)σ
−1

3 σ4, (σ5)σ4,

(σ5)σ4σ3σ
2
2σ3σ

2
4σ3σ2σ2σ

−1

3 σ4, (σ3)σ
−1

2 σ−2
1 σ2

2σ1σ2σ
−1

3 σ4.
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The claim now follows from the fact that all these elements can be expressed by
elements of the given groups:

n = 3 : σ3
1 (σ2)σ1

= e12 = e13

n = 4 : (σ3
1)σ2 (σ2)σ

−1

1 σ2 (σ3)σ2

= (e12)e
−1

23 e
−1

13 = (e13)e23 = e24

n = 5 : (σ3
1)σ

−1

2 σ3 (σ2)σ1σ
−1

2 σ3 (σ3)σ
−1

2 σ3

= (e34)e
−1

13 = (e24)e34e
−1

13 = (e24)e34

(σ4)σ3 (σ4)σ3σ2σ
2
1σ2σ

2
3σ2σ1σ1σ

−1

2 σ3

= e35 = (τ1)e35e45e34e
−1

15

n = 6 : (σ3
2)σ

−1

3 σ4 (σ3)σ2σ
−1

3 σ4 (σ2)σ
−1

3 σ4

= (e45)e
−1

24 = (e35)e45e
−1

24 = (e35)e45

(σ5)σ4 (σ5)σ4σ3σ
2
2σ3σ

2
4σ3σ2σ2σ

−1

3 σ4

= e46 = (τ2)e46e56e45e
−1

26

(σ1)σ2σ
−1

3 σ4 (σ3)σ
−1

2 σ−2
1 σ2

2σ1σ2σ
−1

3 σ4

= τ1 = e13 ¤

While the claim of the preceding lemma has a generalisation to n > 6, the next
result has not and is therefore special to n = 5, 6.

Lemma 2.5. In case n = 5, 6 the group En is normal in the stabiliser group SCn .

Proof. It suffices to show that generators of En map to elements of En, n = 5, 6,
when they are conjugated by τ1, respectively by τ1, τ2: We take first all generators
of E5 and conjugate them by τ1, and in the second step the additional generator e46

which we conjugate by τ1 and all generators of E6 conjugated by τ2. The claim is
proved, since we express all these elements by elements in E5 and E6 respectively.

n = 5, 6 : (e12)τ
−1

1 = (e45)e
−1

24 , (e13)τ
−1

1 = (e13)e
−1

12 e24e45e
−1

24

(e24)τ
−1

1 = e24, (e35)τ
−1

1 = (e35)e15e
−1

12 e
−1

15 e
−1

12 e45

n = 6 : (e46)τ
−1

1 = e46, (e12)τ
−1

2 = (e56)e
−1

35 e
−1

13

(e13)τ
−1

2 = e13, (e24)τ
−1

2 = (e24)e
−1

23 e35e56e
−1

35

(e35)τ
−1

2 = e35, (e46)τ
−1

2 = (e46)e26e
−1

23 e
−1

26 e
−1

23 e56 ¤
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3. Stabilisers for redundant Artin systems

In analogy with the previous section we start with a standard presentation for
the braid group on three strands generated by two braids a and b:

A := 〈a, b | aba = bab〉.

As we may expect the alternating Artin systems An := (a, b, a, b, ...) of length n ≥ 2
have matrix Mn and Artin group A.

Lemma 3.1. Let A act by elementwise conjugation on the n-fold Cartesian product
An, then the stabiliser subgroup of the alternating Artin system An has trivial
intersection with the subgroup H = 〈a2, b2〉 of A if n ≥ 2.

Proof. Forgetting the second strand maps the pure braid group PBr3 onto PBr2

with kernel H, which hence is freely generated by a2 and b2. On the other hand if
n ≥ 2 any element in the stabiliser must actually belong to the center of A ∼= Br3.
But the intersection of the center of A with H must be contained in the center of
H which is trivial since H is free. ¤

Lemma 3.2. The braids τ1, τ2 act on elements of the H-orbit of (a, b, a, b, a, b) by
overall conjugation with b−2 resp. a−2.

Proof. Since overall conjugation commutes with the braid action it suffices to
check the claim for the action of τ1, τ2 on (a, b, a, b, a, b), and even one of these
cases suffices by symmetry:

σ
−1

4 σ3σ
−1

2 σ1σ2σ
−1

3 σ4 (a, b, a, b, a, b)

= (abbab
−1

b
−1

a
−1

, b, b
−1

aba
−1

b, b, b
−1

b
−1

abb, b)

and the last line equals (b−2ab2, b, b−2ab2, b, b−2ab2, b) since

abbab
−1

b
−1

a
−1

= aba
−1

bab
−1

a
−1

= b
−1

abbb
−1

a
−1

b = b
−1

aba
−1

b = b
−1

b
−1

abb. ¤

Corollary 3.3. The braid τ1 acts trivially on alternating Coxeter systems but non-
trivially on alternating Artin systems for n ≥ 5.

Proposition 3.4. The groups SC5 , SC6 are semi-direct products of their normal
subgroups E5 resp. E6 and a free subgroup freely generated by τ1 resp. τ1, τ2.

Proof. The subgroup generated by τ1 resp. τ1, τ2 acts freely on the H-orbit of
(a, b, a, b, a) resp. (a, b, a, b, a, b), and therefore is a free subgroup. The claim is then
immediate from the normality of the group En in SCn for n = 5, 6, see Lemma
2.5. ¤
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Theorem 3.5. Let SAn
, SCn

be the stabilisers of the Artin resp. Coxeter system
associated with the n× n matrix

Mn := (mij), 1 ≤ i, j ≤ n, with mij =

{
3 if i 6≡ j mod 2
1 if i ≡ j mod 2

and denote by En the subgroup of the braid group Brn generated by elements
eij := σj−1 · · ·σi+1σ

mij

i σ
−1

i+1 · · ·σ
−1

j−1, 1 ≤ i < j ≤ n, then the following relations
hold:

En = SAn
= SCn

if n = 2, 3, 4,

En = SAn ⊂ SCn if n = 5, 6,

En ⊆ SAn
⊂ SCn

if n ≥ 7.

Proof. The inclusion EM in SAM
is a general fact again, whereas the inclusion

SAM ⊆ SCM is obvious. Equality En = SCn for n = 2, 3, 4 is shown in Lemma 2.4.
Strict inclusion SAn

⊂ SCn
for n ≥ 5 follows from Corollary 3.3. In case n = 5, 6

finally each braid in SCn can be written as a product τe with τ ∈ 〈τ1, τ2〉 and e ∈ En

by Proposition 3.4. Hence it is immediate by Lemma 3.1 that En is the stabiliser
group SAn in these cases. ¤

4. Conjugacy classes of simple braids

The aim of this section is to exhibit the set of simple braids in En as a single En

conjugation class for n ≤ 6, where a braid is called simple if it is isotopic to a half
twist associated to a path connecting two punctures.

We extend the conjugation action and its exponential notation to sets, so the
conjugation orbit of e13 in En is denoted by eEn

13 := {e13}En .

Lemma 4.1. For n ≤ 6 there is a set of braids TB/S such that Brn = TB/S · SCn

and for all γ ∈ TB/S:

eγ
13 ∈ En ⇒ eγ

13 ∈ eEn
13 .

Proof. We defined SCn to be a stabiliser for the Hurwitz action of Brn on the finite
set Sn

3 , hence the stabiliser is of finite index. Our strategy is to construct T as a
Schreier left transversal for the SCn -cosets.

First note that the cosets are in bijection to the elements of the Brn-orbit of the
Coxeter system. This orbit actually is contained in {s, t, r}n, the set of n-tuples of
transpositions in S3. Hence we may assume that the Schreier transversal contains
only positive braids, since σ

−1

i and σ2
i act the same way on all elements of {s, t, r}n.

Such transversal TB/S for n = 6 can be found, e.g. by a short symbolic compu-
tation, containing 240 elements. Since En = SA we extract the list {γ|eγ

13 ∈ En}
as the list of all elements γ, such that eγ

13 stabilises A6.
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Thus we get in fact 18 elements eγ
13, which can be shown to be conjugated in En

to elements ei,i+2 and hence to e13:

(e13)σ3σ1 = (e24)e
−1

13 (e13)σ1σ2 = (e13)e
−1

12

(e13)σ3σ2σ2 = (e13)e23e
−1

24 (e13)σ2σ2σ3 = (e13)e23e24

(e13)σ3σ3σ1σ2 = (e24)e12e34 (e13)σ3σ4σ1σ1 = (e24)e34e35e12

(e13)σ3σ3σ2σ1σ1 = (e24)e
−1

12 e
−1

24 (e13)σ3σ2σ2σ3σ1 = (e24)e34e
−2
13

(e13)σ2σ2σ3σ3σ1 = (e24)e23 (e13)σ2σ2σ3σ4σ1 = (e24)e34e35

(e13)σ3σ3σ4σ4σ2 = (e12)e23e
−1

35 e45 (e13)σ3σ3σ4σ5σ2 = (e13)e23e
−1

35 e45e46

(e13)σ3σ4σ4σ5σ2 = (e13)e23e
−1

35 e45e46e24 (e13)σ3σ4σ4σ2σ1σ1 = (e35)e45e
−1

13

(e13)σ3σ4σ5σ2σ1σ1 = (e35)e45e
−1

13 e46 (e13)σ3σ4σ2σ3σ3σ1 = (e24)e34e
−1

35

(e13)σ3σ4σ5σ1σ1σ2 = (e13)e12e
−1

35 e45e
−1

13 e
−1

12 e46

(e13)σ3σ4σ4σ5σ5σ2σ3σ1 = (e46)e56e24e35e56

¤

Lemma 4.2. Let τ ∈ SC5 , resp. SC6 be a freely reduced word in τ1, resp. τ1, τ2,
then

eτ
13 ∈ eEn

13 .

Proof. For the at most four words of length one we have:

(e13)τ1 = (e13)e
−1

35 e45e35e45e13e
−1

12

(e13)τ
−1

1 = (e13)e
−1

12 e23e45e
−1

24

(e13)τ2 = e13

(e13)τ
−1

2 = e13

To conclude by induction on the word length we next consider a word τ which is
the concatenation of a word τ ′ and a letter τ ′′. By induction hypothesis eτ ′

13 = ee
13

for some e ∈ En and by the normality of En in 〈En, τ1〉, resp. 〈En, τ1, τ2〉 we can
write eτ ′′ = τ ′′e′ for a suitable e′ ∈ En. Hence

eτ
13 = eτ ′τ ′′

13 = eeτ ′′
13 = eτ ′′e′

13 ∈ eEn
13 . ¤

Proposition 4.3. The intersection of the conjugacy class of half twists in Brn,
n ≤ 6, with En coincides with the conjugacy class of e13 in En.

Proof. One inclusion is obvious. So we pick any β ∈ Brn such that eβ
13 ∈ En,

which may be factorised as β = γτe with γ ∈ TB/S , τ ∈ 〈τ1, τ2〉, e ∈ En. Since τe

normalises En, we get eγ
13 ∈ En and eγ

13 = ee′
13 for some e′ ∈ En by Lemma 4.1.

By Lemma 2.5 and Lemma 4.2 there are e′′, e′′′ ∈ En such that:

eβ
13 = eγτe

13 = ee′τe
13 = eτe′′e

13 = ee′′′e′′e
13 ∈ eEn

13 . ¤
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5. Bundles and monodromy

We owe the following exposition of polynomial covers to [5] and [8].
On a connected topological manifold X a simple Weierstrass polynomial of de-

gree d is a map f : X × C→ C given by

f(x, z) := zd +
d∑

i=1

ci(x)zd−i,

with continuous coefficient maps ci : X → C, and with no multiple roots for any
x ∈ X. Given such a function f the first coordinate projection map onto X may
be restricted to the subspace

Yf := {(x, z) ∈ X × C | f(x, z) = 0}
defining a d-fold cover πf onto X, the polynomial cover associated to f , or to the
complement X ×C \ Yf defining a fibre bundle over X with fibre diffeomorphic to
a d-punctured disc, the punctured disc bundle associated to f .

A finite unramified cover is called polynomial if it is equivalent to a polynomial
cover for some simple Weierstrass function as above. Any cover π : Y → X gives rise
to a monodromy homomorphism from π1(X, x) to the symmetric group S(π

−1
(x)),

which serves for a natural characterisation of polynomial covers:

Proposition 5.1 ([8]). An unramified cover of degree d is polynomial if and only
if its monodromy homomorphism to the symmetric group Sd lifts along the natural
homomorphism Brd → Sd.

There is a natural way to get from a Coxeter system of length n of a symmetric
group Sd to a finite cover: Given an n-punctured disc and a geometric basis for its
fundamental group, which is a choice of free generators γ1, ..., γn such that

i) the generator are represented by disjoint paths homotopic to positive loops
around single punctures,

ii) the product γ1 · · · γn is freely homotopic to the positive boundary of the
disc.

A homomorphism to Sd is obtained by assigning to these generators the elements
of the Coxeter system. The preimage of any subgroup isomorphic to Sd−1 deter-
mines a subgroup of the fundamental group in a unique conjugacy class and thus
a well-defined finite cover of the punctured disc.

The corresponding result associates with an Artin system of length n for the braid
group Brd a d-punctured disc bundle, once a geometric basis for the fundamental
group of an n-punctured disc has been chosen. Here the basis elements are mapped
to the generators of the Artin system, so a homomorphism to the braid group is
obtained.
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Since the space of monic polynomials is an Eilenberg-MacLane space for the
braid group, there is a smooth classifying map for this homomorphism. Pulling
back the tautological simple Weierstrass polynomial we get a simple Weierstrass
polynomial on the n-punctured disc, and the associated punctured disc bundle is
the one we aim for.

6. Families of polynomials on the plane

We enter now the realm of complex geometry where there is an abundance of
covers and bundles as defined in the previous section.

Example 6.1. Given a branched cover p : Y → X of a complex manifold X with
branch locus B, then the restriction Y − p

−1
(B) → X − B is a finite topological

cover. Its monodromy
π1(X −B, x) −→ S(p

−1
(x))

is also called the monodromy of the branched cover.

Example 6.2. Given a plane curve C ∈ C2 and a projection p : C2 → C such that
p|C is a finite branched cover, then restricted to the preimage of the complement of
the branch locus p|C is a polynomial cover and p|C2−C is a punctured disc bundle.
The corresponding structure homomorphism to the braid group is called the braid
monodromy.

The second example leads a straight way to the following generalised notion of
braid monodromy:

Definition 6.3. Suppose D ⊂ T × C is a divisor in the trivial line bundle over
a complex manifold T such that the map p|D induced from the first projection
p = pr1 onto T is a finite cover with branch locus B ⊂ T , then the restriction of p

to T−(D∪p
−1

(B)), the intersection of the complement of D and the preimage of the
branch complement, is a punctured disc bundle and its structure homomorphism
is called the braid monodromy of D.

In favourable circumstances this notion can be used to assign a braid monodromy
to a family of polynomials.

Definition 6.4. A map f : T × C2 → C is called a family of plane polynomials
admissible with respect to a projection p : C2 → C if

i) the restriction ft to each plane {t} × C2 is a polynomial,
ii) the zero divisor Zf = f

−1
(0) and the singular values divisor Vf are branched

covers for the appropriate maps.

Zf → T × C2 Vf → T × C
↓ ↓

T × C T
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In this case the generalised braid monodromy of Vf ⊂ T×C is called the bifurcation
braid monodromy of the family.

Lemma 6.5. The bifurcation braid monodromy of the family of plane polynomials
pλ(x, y) = y3 − 3λy + 2x is generated by the cube of the twist on the two singular
values.

Proof. The divisor of singular values is given by the equation λ3 = x2, hence the
bifurcation braid monodromy is the well-known braid monodromy of a generically
projected simple cusp. ¤

Lemma 6.6. The bifurcation braid monodromy of the family pλ(x, y) = y2−x2 +λ

is the full braid group Br2.

Proof. The divisor of singular values is given by the equation x2 = λ, hence the
bifurcation braid monodromy is the well-known braid monodromy of a vertical
tangency point on a smooth double cover. ¤

Definition 6.7. The bifurcation braid monodromy group of a plane polynomial p0

with zero set a simple cover branched at n points by a linear projection p : C2 → C
is the subgroup of Brn generated by the images of the bifurcation braid monodromy
of all families of plane polynomials containing p0 which are admissible w.r.t. p.

Proposition 6.8. The bifurcation braid monodromy of any generic polynomial
deformation equivalent to y2 − xk is the full braid group Brk.

Proof. It suffices to consider the family y2−xk+kx+λ. Its singular value divisor is
given by the equation xk−kx = λ of which the braid monodromy is as claimed. ¤

Thus having dealt with the easiest cases we now want to investigate polynomials
with branch degree three, which are in fact intimately related to the alternating
Artin systems considered in the first part of this paper.

Lemma 6.9. The polynomial cover and its complement fibration for the polynomial
y3−3y+2xk are associated to the alternating Artin system of length 2k for a natural
choice of basis of the fundamental group of the branch complement.

Proof. By straightforward computation the fibre at x = 0 is C2 with punctures at
y = −√3, 0,

√
3 which is regular, non-regular fibres occur at x2k = 1 exactly and

along rays x = rζ, r ∈ [0, 1], ζ primitive with ζ2k = 1 the points −√3, 0 respectively
0,
√

3 get closer and merge finally according to ζk = −1 resp. ζk = 1.
So the elements of the star-shaped basis are assigned alternatingly the twists of
the intervals [−√3, 0], [0,

√
3] which constitute the generator set for an alternating

Artin system of length 2k generating Br3. ¤
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Number the branch points of the polynomial cover given by the polynomial
y3 − 3y + 2xk according to increasing arg starting with x1 = 1.

Notice that the branch locus for the polynomial cover given by y3−3p(x)y+2q(x)
is described by the equation p3(x) = q2(x).

Lemma 6.10. The family y3 − 3y + 2(xk − λ), λ ∈ [−1, 1] degenerates at λ = ±1
only, branch points are confined to straight rays, and even resp. odd indexed branch
points merge at zero for λ → 1 resp. λ → −1.

Proof. The branch points solve the equation

(xk − λ)2 = 1 ⇐⇒ xk = λ + 1 ∨ xk = λ− 1.

The claim follows. ¤

Lemma 6.11. The families y3 − 3y + 2(xk ± 1 − µkx), µ ∈ C small, have an
associated branch locus divisor locally isomorphic to that of the family y2 − xk.

Proof. The branch locus is given by the equation

(xk ± 1− µkx)2 = 1
⇔ (xk − µkx)(xk − µkx∓ 2) = 0

The corresponding divisor consists for small µ of a smooth unbranched part and
the divisor associated to y2 − xk. ¤

Lemma 6.12. The family y3 − 3(1 − λ)y + 2(xk − iλ), λ ∈ [0, 1] degenerates at
λ = 1 only, all branch points are on a circle of modulus depending on λ, and pairs
xν , xν+1, where ν is even, merge at k distinct points for λ → 1.

Proof. The branch points solve the equation

(xk − iλ)2 = (1− λ)3 ⇔ xk = iλ±
√

(1− λ)3

and one may check that arg(xν) is strictly increasing resp. decreasing with λ → 1
for odd resp. even index. ¤

Lemma 6.13. The family y3 + µy + 2(xk − i− µ), µ ∈ C small, has an associated
branch locus divisor isomorphic to k copies of the branch locus divisor of the family
y3 − 3λy + 2x locally at µ = 0.

Proof. The branch locus is given by the equation (xk − i − µ)2 = −µ3. Hence
up to invertible factors this equation reads at each root α of the left hand side:
(x− α)2 = µ3. Since the number of roots is k the claim follows. ¤

Lemma 6.14. There is a family of local deformations of y3 − 2(xk − i) such that
generically all branch points are simple except for a single double point.
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Proof. At λ = 1 the polynomial is of the form y3 + 2(xk − i), hence the singular
values for the projection are at xk = i. On may choose an arbitrary one of these
roots say α and define a perturbation y3 − 3ε(x − α)y + 2(xk − i). The singular
values are now the zero locus of

ε(x− α)3 − (xk − i)2 =: (x− α)2(ε(x− α)− p2
α(x)).

Assume there is another double root x(ε) for the ε-family then

ε(x(ε)− α)− p2
α(x(ε)) = 0 (1)

∧ ε− 2p′α(x(ε))pα(x(ε)) = 0 (2)

but on the other hand with equation (1) also its derivative must vanish:

0 =
∂

∂ε

(
ε(x(ε)− α)− p2

α(x(ε))
)

= x(ε)− α + εx′(ε)− 2p(x(ε))p′(x(ε))x′(ε)
(2)
= x(ε)− α + εx′(ε)− εx′(ε)

= x(ε)− α.

contrary to the assumption that x(ε) is a root different from α. ¤

Lemma 6.15. There is a family of polynomials which contains in its interior a
family parameterised by λ ∈ [0, 1] such that λ = 0 yields the polynomial y3−3y+2xk

and for λ → 1 the family meets its only degeneration for which all points branch
points remain distinct except for the merging pair x1, x2. Moreover the branch locus
divisor has a cusp over λ = 1.

Proof. We have to combine the families of the preceding lemmas into a family of
two complex parameters with α chosen to be the root at which x1, x2 merge. Then
the interval can be mapped to the parameter space in such a way as to yield the
desired properties.

The final claim follows from Lemma 6.13. ¤

Our objective is now reached since the corresponding monodromies generate the
group En.

Proposition 6.16. The bifurcation braid monodromy group of the plane polynomi-
als y3−3y+2xk contains a subgroup in the conjugacy class of the standard isotropy
group En.

Proof. The case k = 1 is Lemma 6.5. In case k ≥ 2 we consider the family
y3 − 3`(x)y + 2(xk − µ) with `(x) linear. We compute the braid monodromy with
respect to the natural choice of geometric basis of Lemma 6.9 with only a slightest
move of the reference point from the origin to a point in the sector defined by the
rays of x2k and x1.
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It suffices to show that the generators e12, eν,ν+2 of EM are contained in the braid
monodromy. The triple twist e12 is obtained by going around a degeneration as
given by the family of Lemma 6.15. The twists eν,ν+2, ν even resp. odd are gener-
ators for the full braid group on the even resp. odd indexed branch points. They
are realised by an appropriate deformation in the family of Lemma 6.11. ¤

7. Vanishing arcs and the Donaldson problem

The objective of this section is to shed some light on the Donaldson problem
of characterising the vanishing arcs among all isotopy classes of paths in the base
of a polynomial covering. We first sharpen the necessary criterion of [7]. Next we
give a sufficient criterion in terms of the bifurcation braid monodromy. Finally –
after a short digression to the situation for finite coverings – we make ends meet in
favourable cases with the help of our algebraic results.

First we recall Donaldson’s original definition of admissible paths, to which we
add our more restrictive notion of braid admissible paths. Given a path γ in the
base we consider also small punctured discs D0 and D1 around its endpoints.

Definition 7.1. A path γ in the base of a polynomial covering is called admissible,
if the monodromy of the associated finite cover along the boundary of D0 is the same
transposition as the monodromy along the boundary of D1 after parallel transport
along γ.

Definition 7.2. A path γ is called braid admissible, if the braid monodromy along
the boundary of D0 is the same braid as the monodromy along the boundary of D1

after parallel transport along γ.

Remark 7.3. Since the finite cover is supposed to be simple, the monodromy of
any simple loop around a single branch point is a transposition which determines
and is determined by the pair of point, which concurs for the degeneration into
the singular fibre. Hence a path γ is admissible, if and only if the concurrent pairs
coincide for both ends.

To characterize braid-admissibility one has to take into account the ambient
fibre. A path γ is braid admissible, if and only if the concurrent pairs coincide for
both ends and there is a path connecting the pair in each fibre punctured at the
zeroes of g, which varies smoothly along γ.

Lemma 7.4. A vanishing arc is admissible and braid admissible.

Proof. A vanishing arc arises in a smoothing of a single ordinary double point.
So locally the divisor of critical values consists of only smooth components without
vertical tangents except for a single smooth component locally isomorphic to a
double cover branched at a single point.
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Hence the vanishing arc is braid admissible and thus admissible. ¤

Theorem 7.5. The set of vanishing arcs for a plane polynomial y3−3y+2xk is the
orbit of a single vanishing arc under the action of the bifurcation braid monodromy
group.

Proof. Any vanishing arc is obtained by a degeneration of the reference polyno-
mial along an embedded path in the bifurcation complement with second endpoint
a generic point on the degeneration divisor. Since versal families of the given poly-
nomials are versal for the plane curve singularity y3 + xk, the degeneration divisor
is irreducible so we may assume within each class of such a path to have chosen one
which ends at a specified point. Hence a pair of vanishing arcs defines an element
of the fundamental group by concatenation of the corresponding paths. The braid
associated to this loop maps one of the arcs into the other. ¤

This result should be seen in contrast to the situation where instead of a family
of polynomial covers we consider (abstract) finite covers. Then the set of corre-
sponding vanishing arcs is much larger as it is even invariant under the action of
SC2k

and coincides – as remarked in [7] – with the set of admissible arcs.

We can finally characterise vanishing arcs as braid admissible isotopy classes in
case the x-degree of our polynomial is sufficiently small:

Theorem 7.6. The set of vanishing arcs for the polynomials y3−3y+2xk, k = 2, 3
is the orbit of the chord between the branch points x1, x3 under the bifurcation braid
monodromy and coincides with the set of braid admissible paths.

Proof. For the family of Lemma 6.11 the chord between x1, x3 is a vanishing arc
and Theorem 7.5 then implies that its orbit under the bifurcation braid monodromy
group E2k is the set of vanishing arcs. By Lemma 7.4 it is a subset of the braid
admissible arcs.

On the other hand if we are given a braid admissible path then performing a
half twist on it does not change the monodromy of the polynomial covering, hence
it corresponds to a half twist in SA2k

. This group coincides with E2k in the given
cases, so the half twist can actually be given as e e

13 with some e ∈ E2k by Proposition
4.3. We conclude that the given path is the e-translate of our chord and hence is a
vanishing arc. ¤

Remark 7.7. In general a braid admissible isotopy class gives rise to a half twist
contained in SA2k

and it is an open question whether SA2k
equals E2k and whether

its half twists are contained in a single E2k conjugation class.

Acknowledegment. The author would like to thank the referee for valuable
suggestions and comments.



HURWITZ STABILISERS IN Brn 17

References

[1] E. Artin, Theory of braids, Ann. Maths., 48 (1947), 101–126.
[2] J. Birman, K. Ko and S.-J. Lee, A new approach to the word and conjugacy

problems in the braid groups, Adv. Math., 139 (1998), 322–353.
[3] J. Birman and B. Wajnryb, 3-fold branched coverings and the mapping class

group of a surface, in Geometry and Topology (College Park, Md., 1983/84),
ed. J. Alexander, J. Harer, 24–46, Lecture Notes in Math., 1167, Springer,
Berlin-New York, 1985.

[4] F. Catanese and B. Wajnryb, The fundamental group of generic polynomials,
Topology, 30(4) (1991), 641–651.

[5] D. Cohen and A. Suciu, The braid monodromy of plane algebraic curves and

hyperplane arrangements, Comment. Math. Helv., 72 (1997), 285–315.
[6] A. Dörner, Isotropieuntergruppen der artinschen Zopfgruppen, Bonner Mathe-

matische Schriften 255. Universität Bonn, Mathematisches Institut, Bonn,
1993.

[7] S. K. Donaldson, Polynomials, vanishing cycles and Floer homology, in Mathe-
matics: frontiers and perspectives, 55–64, AMS., Providence, 2000.

[8] V. L. Hansen, Braids and Coverings, Cambridge Univ. Press (1989), London
Math. Soc. Student Texts 18.
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