PLANARITY OF INTERSECTION GRAPHS OF IDEALS OF RINGS

Sayyed Heidar Jafari and Nader Jafari Rad

Received: 1 March 2010; Revised: 7 April 2010
Communicated by Abdullah Harmancı

Abstract. In this paper we characterize planar intersection graphs of ideals of a commutative ring with 1.

Mathematics Subject Classification (2000): 16D25, 05C62, 05C75
Keywords: intersection graph, planar graph

1. Introduction

For graph theory terminology in general we follow [6]. Specifically, let \(G = (V, E) \) be a graph with vertex set \(V \) of order \(n \) and edge set \(E \). We denote the degree of a vertex \(v \) in \(G \) by \(d_G(v) \), which is the number of edges incident to \(v \). A graph \(G \) is complete if there is an edge between every pair of the vertices. A subset \(X \) of the vertices of a graph \(G \) is called independent if there is no edge with two endpoints in \(X \). A graph \(G \) is called bipartite if its vertex set can be partitioned into two subsets \(X \) and \(Y \) such that every edge of \(G \) has one endpoint in \(X \) and other endpoint in \(Y \). A complete bipartite graph is a bipartite graph in which any vertex of a partite set is adjacent to all vertices in another partite set. A graph \(G \) is said to be star if \(G \) contains one vertex in which all other vertices are joined to this vertex and \(G \) has no other edges. The complement \(\overline{G} \) of \(G \) is the graph with vertex set \(V(\overline{G}) = V(G) \), and \(E(\overline{G}) = \{uv : uv \notin E(G)\} \). The complement of a complete graph is the null graph.

Let \(F = \{S_i : i \in I\} \) be an arbitrary family of sets. The intersection graph \(G(F) \) is the one-dimensional skeleton of the nerve of \(F \), i.e., \(G(F) \) is the graph whose vertices are \(S_i, i \in I \) and in which the vertices \(S_i \) and \(S_j \) (\(i, j \in I \)) are adjacent if and only if \(S_i \neq S_j \) and \(S_i \cap S_j \neq \emptyset \). It is shown that every simple graph is an intersection graph, ([5]).

It is interesting to study the intersection graphs \(G(F) \) when the members of \(F \) have an algebraic structure. Bosak [2] in 1964 studied graphs of semigroups. Then Csáky and Pollk [4] in 1969 studied the intersection graphs of subgroups of a finite...

Chakrabarty et al. [3] studied intersection graphs of ideals of rings. The intersection graph of ideals of a ring R, denoted $\Gamma(R)$, is the undirected simple graph (without loops and multiple edges) whose vertices are in a one-to-one correspondence with all nontrivial left ideals of R and two distinct vertices are joined by an edge if and only if the corresponding left ideals of R have a nontrivial (nonzero) intersection. Clearly the set of vertices is empty for left simple rings. In this case we refer $\Gamma(R)$ as the empty graph.

Chakrabarty et al. [3] studied planarity of intersection graphs of the ring \mathbb{Z}_n. In this paper we will characterize all commutative rings with 1 which $\Gamma(R)$ is planar.

We denote by K_n the complete graph on n vertices, and by $K_{m,n}$ the complete bipartite graph which one partite set is of cardinality m and another partite set is of cardinality n.

2. Results

We will repeatedly use Kuratowski's theorem, which states that a graph is planar if and only if it does not contain a subdivision of K_5 or $K_{3,3}$ (see [6, Theorem 6.2.2]).

Let R be a commutative ring with 1. We begin with the following lemma.

Lemma 2.1. If $\Gamma(R)$ is planar, then any chain of ideals of R has length at most five.

Proof. Let $I_1 \subset I_2 \subset ... \subset I_5$ be a chain of nontrivial proper ideals of R. Then $I_1, I_2, ..., I_5$ induce a K_5 as an induced subgraph in $\Gamma(R)$. This completes the proof. \qed

Corollary 2.2. If $\Gamma(R)$ is planar, then R is both Noetherian and Artinian.

Lemma 2.3. If $\Gamma(R)$ is null and R contains at least two proper nontrivial distinct ideals, then $R \cong R_1 \times R_2$, where R_1, R_2 are fields.

Proposition 2.4. $\Gamma(R_1 \times R_2)$ is planar if and only if one of $\Gamma(R_1), \Gamma(R_2)$ is empty, and another is empty or null with at most two vertices.

Proof. (\Rightarrow) Let I_1, I_2 be two nontrivial ideals of R_2 with $I_1 \subseteq I_2$. Then $0 \times I_1, 0 \times I_2, 0 \times R_2, R_1 \times I_1, R_1 \times I_2$ form a K_5, a contradiction. So $\Gamma(R_1), \Gamma(R_2)$ are null or empty. We show that $\Gamma(R_1)$ or $\Gamma(R_2)$ is empty. Suppose that both $\Gamma(R_1)$ and $\Gamma(R_2)$
are null. Let $I < R_1, J < R_2$, (nontrivial). Then $0 \times R_2, 0 \times J, I \times R_2, I \times J, R_1 \times J$ form a K_5, a contradiction. Assume that $\Gamma(R_1)$ is empty. Suppose that $\Gamma(R_2)$ is null. By Lemma 2.3, $\Gamma(R_2)$ has at most two vertices.

(\Leftarrow) Is straightforward. \hfill \Box

Corollary 2.5. $\Gamma(R_1 \times R_2 \times R_3)$ is planar if and only if R_i is a field for $i = 1, 2, 3$.

Proof. Notice that if R_3 is not a field and $I \leq R_3$, then $R_2 \times 0, R_2 \times I$ is an edge in $\Gamma(R_2 \times R_3)$, and by Proposition 2.4, $\Gamma(R_1 \times R_2 \times R_3)$ is not planar. \hfill \Box

Let $Max(R)$ be the set of all maximal ideals of R.

Lemma 2.6. If $\Gamma(R)$ is planar, then $|Max(R)| \leq 3$.

Proof. Let $\Gamma(R)$ is planar. Suppose that $|Max(R)| \geq 4$. Let M_1, M_2, M_3 be three distinct maximal ideals of R. Let $I = M_1 \cap M_2 \cap M_3$. Since $|Max(R)| \geq 4$, we have $I \neq 0$. Then $M_1, M_2, M_3, M_1 \cap M_2, M_1 \cap M_3, M_2 \cap M_3$ form a K_6, as an induced subgraph, a contradiction. \hfill \Box

We divide the rest of the paper into two subsection according to $|Max(R)|$.

2.1. $|Max(R)| \neq 1$. Let $J(R)$ be the Jacobson radical of R. We first consider the case $|Max(R)| = 3$.

Corollary 2.7. If $|Max(R)| = 3$ and $\Gamma(R)$ is planar, then $J(R) = 0$.

Corollary 2.8. If $|Max(R)| = 3$ and $\Gamma(R)$ is planar, then $R \cong R_1 \times R_2$.

Proof. Let $Max(R) = \{M_1, M_2, M_3\}$. By Corollary 2.7, $M_1 \cap (M_2 \cap M_3) = 0$. On the other hand $M_1 + (M_2 \cap M_3) = R$. So the result follows. \hfill \Box

Theorem 2.9. If $|Max(R)| = 3$, then $\Gamma(R)$ is planar if and only if $R = R_1 \times R_2 \times R_3$, where R_i is a field for $i = 1, 2, 3$.

Proof. Follows from Corollary 2.8, Lemma 2.3 and Proposition 2.4. \hfill \Box

We next assume that $|Max(R)| = 2$.

Lemma 2.10. (Nakayama, [1]) Let M be a finitely generated R-modulate. If $J(R)M = M$, then $M = 0$.

Lemma 2.11. If $Max(R) = \{M_1, M_2\}$ and $\Gamma(R)$ is planar, then $R \cong M_1^3 \times M_2^3$.

We first show that \(M_3^1 \cap M_3^2 = 0 \). Suppose that \(M_3^1 \cap M_3^2 \neq 0 \). By Corollary 2.2, \(M_1, M_2 \) are finitely generated \(R \)-modules. By Nakayama’s lemma \(M_1, M_2, (M_1 \cap M_2), (M_1 \cap M_2)^2, (M_1 \cap M_2)^3 \) are all mutually distinct. Then \(M_1, M_2, (M_1 \cap M_2), (M_1 \cap M_2)^2, (M_1 \cap M_2)^3 \) form a \(K_5 \) as an induced subgraph, a contradiction. So \(M_3^1 \cap M_3^2 = 0 \). On the other hand \(M_3^1 + M_3^2 = R \). This completes the result.

Theorem 2.12. If \(|\text{Max}(R)| = 2 \), then \(\Gamma(R) \) is planar if and only if one of \(\Gamma(R_1), \Gamma(R_2) \) is empty, and another is empty or null with one vertex.

Proof. Notice that by Lemma 2.11, \(R \cong R_1 \times R_2 \). Now the result follows by Proposition 2.4.

2.2. \(|\text{Max}(R)| = 1 \). In this subsection \(R \) is a local ring. Let \(M \) be the unique maximal ideal of \(R \). The following lemmas are easily verified.

Lemma 2.13. If \(\Gamma(R) \) is planar, then \(M^5 = 0 \).

Lemma 2.14. Let \(I \trianglerighteq R \). Then \(\frac{I}{IM} \) is a vector space over \(\frac{R}{M} \). Further, any subspace of \(\frac{I}{IM} \) is in the form \(\frac{J}{IM} \), where \(J \trianglerighteq R \) and \(IM \subseteq J \subseteq I \).

Lemma 2.15. Let \(I \trianglerighteq R \). If \(\dim(\frac{I}{IM}) \geq 3 \), then \(\Gamma(R) \) is not planar.

Proof. Let \(u_1, u_2, u_3 \) be three linear independent vectors in \(\frac{I}{IM} \). Let \(W = \langle u_1, u_2, u_3 \rangle \). Since \(\dim(\frac{W}{(u_1)}) = 2 \), \(\frac{W}{(u_1)} \) contains exactly \(|\frac{R}{M}| + 1 \) subspaces of dimension 1. This implies that \(W \) contains at least 3 subspaces \(W_1, W_2, W_3 \) of dimension 2 containing \(u_1 \). On the other hand \(W_4 = \langle u_2, u_3 \rangle \) is another subspace of \(W \) of dimension 2. We obtain that \(W_1, W_2, W_3, W_4 \) are for subspaces of dimension 2 such that \(W_i \cap W_j \neq 0 \) for \(i, j \in \{1, 2, 3, 4\} \). Suppose that \(W_i = \frac{J}{IM} \) for \(i = 1, 2, 3, 4 \). Now \(J_1, J_2, J_3, J_4, M \) form a \(K_5 \).

Corollary 2.16. Let \(M^2 = 0 \). Then \(\Gamma(R) \) is planar if and only if \(\dim(M) = 1 \) or 2 as a vector space over \(\frac{R}{M} \).

Proof. Follows by Lemma 2.15 with putting \(I = M \).

Corollary 2.17. Let \(M^2 = 0 \). Then \(\Gamma(R) \) is planar if and only if \(\Gamma(R) \) is either an star or \(K_4 \).

Lemma 2.18. Let \(M^2 \neq 0 \). If \(\Gamma(R) \) is planar, then \(\dim(\frac{M}{M^2}) = 1 \) and \(\frac{M}{M^2} \cong \frac{M^2}{M^2} \) as an isomorphism of \(R \)-modules.
By Lemma 2.15, \(\dim(\frac{M}{x}) \leq 2 \). Suppose that \(\dim(\frac{M}{x}) = 2 \). It follows that \(\frac{M}{x} \) contains at least three subspaces \(W_1, W_2, W_3 \) of dimension 1. Let \(W_i = \frac{x}{x} \) for \(i = 1, 2, 3 \). Then \(J_1, J_2, J_3, M, M^2 \) form a \(K_5 \), a contradiction. Thus \(\dim(\frac{M}{x}) = 1 \). As a consequent, \(M = \langle a \rangle \) for some \(a \in R \). We define the map \(\phi : \frac{M}{x} \rightarrow \frac{M^2}{x} \) by \(\phi(ra + M^2) = ra^2 + M^3 \). Since \(\frac{M^2}{x} \) is a simple \(R \)-module, it is straightforward to see that \(\phi \) is an \(R \)-isomorphism.

Corollary 2.19. Let \(M^2 \neq 0 \) and \(M^3 = 0 \). Then \(\Gamma(R) \) is planar if and only if \(\Gamma(R) = K_2 \).

Proof. Let \(\Gamma(R) \) be planar. By Lemma 2.18, \(M = Ra \) where \(a \in R \). Let \(I \) be a minimal ideal of \(R \). We show that \(I = M^2 \). Since \(I \) is a simple \(R \)-module, we obtain \(I \cong \frac{R}{M^2} \). Then \(I = \langle x \rangle \), where \(x \in R \). If \(x \in M \setminus M^2 \), then \(x = ra \), where \(r \in R \setminus M \). So \(r \) is invertible and \(\langle x \rangle = \langle a \rangle = M \), a contradiction. We deduce that \(x \in M^2 \), and so \(I \subseteq M^2 \). Since \(M^2 \) is simple, we obtain \(I = M^2 \). Thus \(M^2 \) is the unique minimal ideal of \(R \), and \(\Gamma(R) = K_2 \). The converse is obvious.

Lemma 2.20. Let \(M^3 \neq 0 \) and \(M^4 = 0 \). If \(\Gamma(R) \) is planar, then \(\dim(\frac{M}{M^3}) = 1 \) and \(\frac{M}{M^3} \cong \frac{M^2}{M^3} \cong \frac{M^4}{M^7} \).

Corollary 2.21. Let \(M^3 \neq 0 \) and \(M^4 = 0 \). Then \(\Gamma(R) \) is planar if and only if \(\Gamma(R) = K_3 \) or \(K_4 \).

Proof. By Lemma 2.20, \(M = Ra \) where \(a \in R \). Let \(I \) be a minimal ideal of \(R \). We show that \(I = M^3 \). Since \(I \) is a simple \(R \)-module, we obtain \(I \cong \frac{R}{M^3} \). Then \(I = \langle x \rangle \), where \(x \in R \). If \(x \in M \setminus M^2 \), then \(x = ra \), where \(r \in R \setminus M \). So \(r \) is invertible and \(\langle x \rangle = \langle a \rangle = M \), a contradiction. If \(x \in M^2 \setminus M^3 \), then \(x = ra^2 \), where \(r \in R \setminus M \). As before we can see that \(\langle x \rangle = \langle a^2 \rangle = M^2 \), a contradiction. We deduce that \(x \in M^3 \), and so \(I \subseteq M^3 \). Since \(M^3 \) is simple, we obtain \(I = M^3 \). Thus \(M^3 \) is the unique minimal ideal of \(R \), and \(\Gamma(R) \) is complete. Now the result follows.

Lemma 2.22. Let \(M^4 \neq 0 \) and \(M^5 = 0 \). If \(\Gamma(R) \) is planar, then \(\dim(\frac{M}{M^4}) = 1 \) and \(\frac{M}{M^4} \cong \frac{M^2}{M^4} \cong \frac{M^3}{M^4} \cong \frac{M^5}{M^8} \).

Corollary 2.23. Let \(M^4 \neq 0 \) and \(M^5 = 0 \). Then \(\Gamma(R) \) is planar if and only if \(\Gamma(R) = K_4 \).

Proof. By Lemma 2.22, \(M = Ra \) where \(a \in R \). Let \(I \) be a minimal ideal of \(R \). Similar to the proof of Corollary 2.21, we obtain \(I = M^4 \). Thus \(M^4 \) is the unique minimal ideal of \(R \), and \(\Gamma(R) \) is complete. Now the result follows.
As a consequent of Corollaries 2.17, 2.19, 2.21 and 2.23 we obtain the following.

Theorem 2.24. If $|\text{Max}(R)| = 1$, then $\Gamma(R)$ is planar if and only if $\Gamma(R)$ is an star, K_1, K_3, or K_4.

References

Sayyed Heidar Jafari and Nader Jafari Rad

Department of Mathematics

Shahrood University of Technology

Shahrood, Iran

e-mails: shjafari55@gmail.com (Sayyed Heidar Jafari)

n.jafarirad@gmail.com (Nader Jafari Rad)