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ABSTRACT. We give an algorithm for working out the indecomposable direct
summands in a Krull-Schmidt decomposition of a tensor product of two simple
modules for G = SL3 in characteristics 2 and 3. It is shown that there is a
finite family of modules such that every such indecomposable summand is
expressible as a twisted tensor product of members of that family.

Along the way we obtain the submodule structure of various Weyl and
tilting modules. Some of the tilting modules that turn up in characteristic
3 are not rigid; these seem to provide the first example of non-rigid tilting
modules for algebraic groups. These non-rigid tilting modules lead to examples
of non-rigid projective indecomposable modules for Schur algebras, as shown
in the Appendix.

Higher characteristics (for SL3) will be considered in a later paper.
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1. Introduction

We begin by explaining our motivation, which may be formulated for an arbitrary

semisimple algebraic group in positive characteristic.

1.1. Let G be a semisimple, simply connected linear algebraic group over an
algebraically closed field K of positive characteristic p. We fix a Borel subgroup
B and a maximal torus 7" with 7" C B C G and we let B determine the negative
roots. We write X = X(T) for the character group of 7' and let Xt denote the
set of dominant weights. By G-module we always mean a rational G-module, i.e. a
K|[G]-comodule, where K|[G] is the coordinate algebra of G. For each A € X we

have the following (see [17]) finite dimensional G-modules:

L()\) simple module of highest weight A;

A(X)  Weyl module of highest weight A;

V(\) = ind§ Ky; dual Weyl module of highest weight X;
T(A) indecomposable tilting module of highest weight A
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where K is the 1-dimensional B-module upon which T acts by the character A
with the unipotent radical of B acting trivially. The simple modules L(\) are
contravariantly self-dual. The module V()) has simple socle isomorphic to L(\);
the module A(\) is isomorphic to "V (), the contravariant dual of V(A), hence has
simple head isomorphic to L(A).

The central problem which interests us is as follows.

Problem 1. Describe the indecomposable direct summands of an arbitrary tensor
product of the form L(\) ® L(u), for A\, u € XT.

As usual, a superscript MUl on a G-module M indicates that the structure has
been twisted by the jth power of the Frobenius endomorphism on G. By Steinberg’s
tensor product theorem, there are twisted tensor product factorizations

L) ~ L) eLWHU e L) e ..
L) = L") @ LpHM o L) @ - -
where A = Y Mp?, u= > 1fp’ are the p-adic expansions (unique) such that each
M, 17 belongs to the restricted region
X, ={ve X" |{a",v) <p—1 for all simple roots a}.

Putting these factorizations into the original tensor product we obtain

(4]
L) ®L(p) ~ Q50 (LAY @L(uh))” (1.1.1)
and thus we see that in Problem 1 one should first study the case where both
highest weights in question are restricted.

Assume that Problem 1 has been solved for all pairs of restricted weights (note
that this is a finite problem for any given G). Let § = §(G) be the set of isomor-
phism classes of indecomposable direct summands appearing in some L ® L/, for a
pair L, L’ of restricted simple G-modules. Let [L ® L' : I] be the multiplicity of
I € § as a direct summand of L ® L’. Then one can express each tensor product
L(M)® L(p?) as a finite direct sum of indecomposable modules

L)@ L) ~ @D [LV) @ L(w) : 1] I. (1.1.2)
Icg

Thus, the original tensor product L(A) ® L(u) has a decomposition of the form
L) ® L) ~ @20 Byey [LV) @ L(d) : 1] U]
and by interchanging the order of the product and sum we obtain the decomposition
L) @ L) = @ (T150[LV) @ L) L)) @yuo I (113)

where the direct sum is taken over the set of all finite sequences (lo, I1, I2,...) of

members of §.
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This gives a direct sum decomposition of L(A) ® L(u) in terms of twisted tensor
products of modules in §. If all such twisted tensor products are themselves inde-
composable as G-modules, then we have in some sense solved Problem 1 for general
A, . Even when this isn’t true we have still obtained a first approximation towards
a solution to Problem 1. This leads us to the following secondary set of problems:

Problem 2. Given G,

(a) classify the members of the family § = §F(G) and compute the multiplicities
[L® L' :1I]for I €F, L,L restricted;

(b) determine conditions under which a twisted tensor product of members from

§ remains indecomposable;

(c) determine the module structure of the members of F.

Let G, denote the kernel of the rth iterate of the Frobenius, let G, T denote the
inverse image of 7" under the same map, and let QT(A) denote the G,T-injective
hull of L(\) for any A € X,., where

X, :={ve X" |{a",v) <p" —1 for all simple roots a}.

Let h denote the Coxeter number of G. If p > 2h — 2 then Qr(,u) has (for any
1 € X,) a G-module structure; this structure is unique in the sense that any two
such G-module structures are equivalent. (These statements are expected to hold

for all p.) Concerning Problem 2(b) we observe the following.

Lemma. Assume that p > 2h — 2 or that if p < 2h — 2 then Q1(M) has a unique
G-module structure for all p € X. If each member of the sequence (I);>0 (I; € §)
has simple G1T -socle with restricted highest weight then the twisted tensor product

®j>0 Ij[-ﬂ is indecomposable as a G-module. Hence P is indecomposable.

Proof. By assumption the socle of I; is simple, as a G17T-module, hence has the
form L(u(j)) for some u(j) € Xi1. Hence the module I; embeds in the G,T-
injective hull Ql(,u(j)) of L(u(y)), for each j, so P:= Iy ® IP} ® - @ I embeds
in Q := Q(u(0) ® Qu(u(1) @ - ® Qi(u(m))™. By [17, I1.11.16 Remark
2] the module @ has a G-module structure and is isomorphic to Q,.(u), where
w=>; w(t;)p’. Since Q. (1) has simple G, T-socle L(p) it follows that P also has
simple G,T-socle L), and thus has simple G-socle L(u). O

We note that in Types A; and Ay (G = SLg, SL3) it is known that Ql(u) has a
unique G-module structure for all 4 € X7, for any p. In the case G = SLy (studied in
[11]) it turns out that for any p the members of § are always indecomposable tilting
modules with simple G1T-socle of restricted highest weight, so the determination
of the family § and the multiplicities [L ® L’ : I] leads in that case to a complete

solution of Problem 1 for all pairs of dominant weights. The purpose of this paper
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is to examine the next most complicated case, namely the case G = SL3. In that
case, we will see that all members of § have simple G1T-socle of restricted highest
weight when p = 2, and this holds with only two exceptions when p = 3, so the
decomposition (1.1.3) is decisive in characteristic 2 and provides a great deal of

information in characteristic 3.

Furthermore, although in characteristic 3 the summands in (1.1.3) are not always
indecomposable, by analyzing the further splittings which arise, we show that there
is a finite family §’, closely related to §, such that every indecomposable direct
summand of L(\) ® L(p) is isomorphic to a twisted tensor product of members of

. Thus, we obtain a complete solution to Problem 1 in characteristics 2 and 3.

1.2. The paper is organized as follows. In Section 2 we recall known facts that we
use. Our main technique is to compute structure of certain Weyl modules (using a
computer when necessary) and use that structure to deduce structural information
on certain tilting modules. The main results obtained by our computations are given
in Sections 3 and 4. To be specific, the structure of the relevant Weyl modules
is given in 3.1 and 4.1, while the main results on tensor products — including
description of the family §, multiplicities [L ® L’ : I] for restricted simples L, L'
and I € §, and structure of members of § (in most cases) — are summarized in 3.2

and 4.2. One will also find worked examples in those sections.

In characteristic 2 all members of F(SL3) are tilting modules with simple G1T-
socle of restricted highest weight, so the decomposition (1.1.3) gives a complete
answer to Problem 1 for all pairs of dominant weights. This is similar to what
happens for G = SLy. Moreover, each member of F(SLs3) in this case is rigid
(a module is called rigid if its radical and socle filtrations coincide) and can be
described by a strong diagram in the sense of [1]. Recall that in [1] a module
diagram is a directed graph depicting the radical series of the module, in such a way
that vertices correspond to composition factors and edges to non-split extensions,
and a strong diagram is one in which the diagram also determines the socle series.
(One should consult [1] for precise statements.)

Characteristic 3 is more complicated. (As standard notation, we write (a, b) for
a highest weight of the form aw; + bws where w;, ws are the usual fundamental
weights.) First, all but two of the members of §F(SL3) have simple G;T-socle of
restricted highest weight. The two exceptional cases are in fact simple modules
of highest weights (5,2) and (2,5) that are not restricted, and so one is forced to
consider possible further splitting of summands in (1.1.3), in cases where one or
both of these modules appears in a twisted tensor product on the right hand side.
(This happens only if the tensor square of the Steinberg module occurs in some
factor in the right hand side of (1.1.1).) In all cases those further splittings can be
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worked out; see Proposition 4.3. This leads to the finite family §’ discussed in the
last paragraph of 1.1.

Furthermore, in characteristic 3 it turns out that four members of F(SL3) —
namely the tilting modules T(3,3), T(4,3), T(3,4), and T(4,4) — are not rigid
and do not have strong Alperin diagrams. The structure of one of the simplest
of these examples, T(4,3), is analyzed in detail in the Appendix by C.M. Ringel,
using different methods. Although not itself projective, Ringel shows that T(4, 3) is
a quotient of the corresponding projective indecomposable for an appropriate Schur
algebra, and thus he produces an example of a non-rigid projective indecomposable
module for that Schur algebra. (See [13], [20], [3], [4] for background on Schur
algebras.) The other non-rigid modules are subject to a similar analysis.

Preliminary calculations indicate that members of F(SL3) are again rigid in char-
acteristics higher than 3. The observed anomalies in characteristic 3 are associated
with the fact that some of the Weyl modules which turn up are too close to the
upper wall of the “lowest p?-alcove” and thus have composition factors with multi-
plicity greater than 1. (Those multiplicities follow, e.g. from [10], from knowledge
of composition factor multiplicities in baby Verma modules, which are well known
in this case.) The simple characters for SL3 have been known for a long time (see
e.g., [15], [16]).

Our results overlap somewhat with [18], [19] although our methods are differ-
ent and we push the calculations further. Larger characteristics, for which some
calculations become in a sense independent of p, will be treated in a future paper.

This paper has been circulating for some time in various forms, and since the
first version was made available, the preprint [2] has appeared, in which further

examples of non-rigid tilting modules for algebraic groups are obtained.

2. Preliminaries

We recall some general facts that will be used in our calculations.

2.1. Let us recall Pillen’s Theorem [21, §2, Corollary A] (see also [5, Theorem
(2.5)]). Write St,. for the rth Steinberg module L((p" — 1)p) = A((p" — 1)p) =
T((p"—1)p). Then for A € X, the tilting module T(2(p" —1)p+wpA) is isomorphic
to the indecomposable G-component of St,. @ L((p" — 1)p + wpA) containing the
weight vectors of highest weight 2(p” — 1)p + woA.

2.2. In general the formal character of a tilting module is not known; even for
SLs3, as far as we are aware this remains an open problem. The following general
result of Donkin (see [7, Proposition 5.5]) computes the formal character of certain
tilting modules. Let A,u € XT and assume that (\,ay) < p, where ag is the
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highest short root. Then:

chT((p—1)p+A) =chL((p—1)p) > e(v) (2.2.1)
veW

and for any v € X,

(T((p—Dp+A+pp): V() = > (T(n): V(&) (2:2.2)

EEN(v)
where N(v) = {¢ € XT : v+ p—p(+ p) € WA}. Furthermore, in Lemma 5 of
Section 2.1 in [8], the characters of the tilting modules which are projective and

indecomposable as Gi-modules are computed explicitly, for G = SLs.

2.3.  Another useful general fact (that will be used repeatedly) is the observation
that tilting modules are contravariantly self-dual:

TT(A) ~ T()) (2.3.1)

for all A € X . This is because (by [17, 11.2.13]) contravariant duality interchanges
A(p) and V(u), so "T(N) is again indecomposable tilting, of the same highest
weight.

2.4. Finally, there is a twisted tensor product theorem for tilting modules, as-
suming that Donkin’s conjecture [5, Conjecture (2.2)] is valid or that p > 2h — 2.
(It is well known [17, I11.11.16, Remark 2] that the conjecture is valid for all p in
case G = SL3.) For our purposes, it is convenient to reformulate the tensor product
theorem in the following form. First we observe that, given A\ € Xt satisfying the

condition

(A, ") >p—1, for all simple roots a, (2.4.1)

there exist unique weights X', p such that
A=) +oppu, Nep-1Dp+ Xy, peX™. (2.4.2)

This is easy to see: for each A; in A = > A\;ww; where the w; are the fundamental
weights, express \; — (p — 1) (uniquely) in the form \; — (p — 1) = r; + ps; with
0<r;<p—1 Thenset N =(p—1)p+> riw; and p=> s;;.

Now by induction on m using (2.4.1) and (2.4.2) one shows that every A € X T
has a unique expression in the form

A= a(0) (2.4.3)

with ag(N), ..., am-1(\) € (p —1)p+ X1 and (a,,(A\),a") < p—1 for at least one
simple root a.
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Given A € X, express A in the form (2.4.3). Assume Donkin’s conjecture holds
if p < 2h — 2. Then there is an isomorphism of G-modules

T(\) ~ é T(a;(\)1. (2.4.4)

Jj=0

To prove this one uses induction and [17, Lemma II.E.9] (which is a slight reformu-
lation of [5, Proposition (2.1)]).

3. Results for p =2

For the rest of the paper we take G = SL3. Conventions: Dominant weights are
written as ordered pairs (a, b) of non-negative integers; one should read (a,b) as an
abbreviation for aw; + bws where w;, ws are the fundamental weights, defined by
the condition (wi,a}/> = 0;5. When describing module structure, we shall always
identify a simple module L(\) with its highest weight \. Whenever possible we
will depict the structure by giving an Alperin diagram (see [1] for definitions) with
edges directed downwards, except in the uniserial case, where we will write M =
[Ls,Ls—1,...,L1] for a module M with unique composition series 0 = My C M; C
-+ C Ms_y C My = M such that L; ~ M;/M;_, is simple for each j.

3.1. Structure of certain Weyl modules for p = 2. The results given below
were computer generated, using GAP [12] code available on the second author’s
web page. (Some cases are obtainable from [9].)

The restricted region X; in this case consists of the weights of the form (a,b)
with 0 < a,b < 1, and we have

These are all tilting modules. Thus it follows immediately that all the members of
§ are tilting.
The structure of the other Weyl modules we need is depicted below. The uniserial

modules have structure
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Finally, the structure of A(2,2) is given by the diagram

(2,2)
e N
A(2,2)=| (0,3) (3,0)
N e
(0,0)

We worked these out using explicit calculations in the hyperalgebra, by methods
similar to those of [14], [22].

3.2. Restricted tensor product decompositions for p = 2. The indecompos-
able decompositions of restricted tensor products for p = 2 is as follows. (We omit
any decomposition of the form L(A) ® L(u) where one of A, u is zero.) There is
an involution on G-modules which on weights is the map A — —wg(X), where wg
is the longest element of the Weyl group. (In Type A this comes from a graph
automorphism of the Dynkin diagram.) We refer to this involution as symmetry,
and we will often omit calculations and results that can be obtained by symmetry
from a calculation or result already given.

Proposition. Suppose p = 2.

(a) The indecomposable direct summands of tensor products of non-trivial re-
stricted simple SLz-modules are as follows:
(1) L(1,0) ®L(1,0) ~ T(2,0); L(0,1) ® L(0,1) ~ T(0, 2);
(2) L(1,0) ® L(0,1) ~ T(1,1) & T(0,0);
(3) L(1,0)® L(1,1) ~T(2,1); L(0,1)®L(1,1) ~T(1,2);
(4) L(1,1)®L(1,1) ~T(2,2) ® 2T(1,1).
Thus the family §(SLs) is in this case given by § = {T(a,b) : 0 < a,b < 2}.

(b) The structure of the uniserial members of § is given as follows:
T(0,0) =[(0,0)]; T(1,0)=[(1,0)]; T(1,1)=[1,1)];
T(2.0) = [(0,1), (2,0), (0,1)].

The structure diagrams of T(2,1), T(2,2) are displayed below:

(1,0 (0,0)
\ ~ ™~
(0,2) (0,3) (3,0)
~ N / ~N / N
(2,1) (1,0) (0,0) (2,2) (0,0)
~N e N e AN ~
(0,2) (0,3) (3,0)
[ ~N e
(1,0) (0,0)

and the structure diagrams of T(0,1), T(0,2), and T(1,2) are obtained by

symmetry from cases already listed.
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(¢) Each member of § has simple G1T-socle (and head) with highest weight be-

longing to the restricted region Xi.

The proof is given in 3.3. First we consider consequences and give some examples.
Recall that a dominant weight is called minuscule if the weights of the corresponding
Weyl module form a single Weyl group orbit. For G = SL3 the minuscule weights
are (0,0), (1,0), and (0, 1).

Corollary. Let p = 2. Given arbitrary dominant weights \, . write X = > Np?,
p=">up’ with N,/ € Xy for all j > 0.

(a) In the decomposition (1.1.3), each term in the direct sum is indecomposable.
Hence the indecomposable direct summands of L(A) @ L(u) are expressible as
a twisted tensor product of members of §. Conversely, every twisted tensor

product of members of § occurs in some L(A) @ L(u).

(b) L(A) ® L(p) is indecomposable if and only if for each j > 0 the unordered

pair {\,u} is one of the cases {(1,0),(1,0)}, {(0,1),(0,1)}, {(1,0),(1,1)},
{(0,1),(1,1)} or one of M,/ is the trivial weight (0,0).

(c) Let m be the mazimum j such that at least one of N, u/ is non-zero. Then
L(A) ® L(u) is indecomposable tilting, isomorphic to T(A+ p), if and only if:
(i) for each 0 < j < m — 1, one of M, pu? is minuscule and the other is the
Steinberg weight (1,1), and (ii) {A\™, u™} is one of the cases listed in part (b).

Proof. Part (a) follows from (1.1.3) and Lemma 1.1. Part (b) follow from the
proposition and the discussion preceding (1.1.3), which shows that each L(M) ®
L(p’) must be itself indecomposable in order for L(\) ® L(11) to be indecomposable.
Then we get part (c) from part (b) by applying Donkin’s tensor product theorem
(2.4.4). O

Ezamples. (i) To illustrate the procedure in part (a) of the corollary, we work out

a specific example:

L(7,2) ® L(6, 3)
~ (L(1,0) ® L(0,1)) @ (L(1,1) ® L(1, 1)) & (L(1,0) ® L(1,0))"
~ (T(1,1) @ T(0,0)) ® (T(2,2) @ 2T(1,1))" @ T(2,0)
~ T(13, 5) @ 2T(6,2) @ 2T (11, 3) @ 2T(5, 1)1

In the calculation, the first line follows from Steinberg’s tensor product theorem, the
second is from the proposition, and to get the last line we applied Donkin’s tensor

product theorem (2.4.4), after interchanging the order of sums and products.
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(i) We have L(3,0) ®L(3,2) ~ (L(1,0)®L(1,0)) ® (L(1,0) o L(1, 1)) ~ T(2,0)®
T(2, 1)1, which is indecomposable but not tilting. This illustrates the procedure
in part (b) of the corollary.

(i) We have L(3,0)@L(3,1) ~ (L(1,0)®L(1, 1)) ® (L(1,0)@L(1,0)" ~ T(2, ) ®
T(2,0) ~ T(6, 1), illustrating part (c) of the corollary.

(iv) It is not the case that every indecomposable tilting module occurs as a direct
summand of some tensor product of two simple modules. For instance, neither
T(3,0) nor T(0,3) (both of which are uniserial of length 3) can appear as one of
the indecomposable direct summands on the right hand side of (1.1.3). This follows
from (2.4.4). More generally, this applies to any non-simple tilting module of the
form T(a,b) with one of a,b equal to zero and the other greater than 2.

3.3. We now consider the proof of Proposition 3.2. First we compute the com-
position factor multiplicities of the restricted tensor products. Let x,(\) be the
formal character of L(\). Then:

(1) xp(1,0) - xp(1,0) = xp(2,0) + 2x,(0, 1);

(2) Xp(l,O) : Xp(ov 1) = Xp(L 1)+ XP(O,O),

(3) xp(1,0) - xp(1,1) = xp(2,1) + 2x,(0,2) + 3xp(1, 0);

(4) X;D(O> 1) : XP(O’ 1) = Xp(07 2) + 2Xp(170)7

(5) xp(0,1) - xp(1,1) = xp(1,2) + 2xp(2,0) + 3x,(0,1);

(6) xp(1,1) - xp(1,1) = Xp(2,2) + 2x5(0,3) + 2x,(3,0) + 2x,(1, 1) + 4x,(0, 0).

Since L(1,0) = T(1,0), it follows that L(1,0) ® L(1,0) is tilting. It must have
T(2,0) as a direct summand by highest weight considerations. But T(2,0) is con-
travariantly self-dual with L(0,1) in the socle, so it follows that L(0,1) appears
with multiplicity at least 2 as a composition factor of T(2,0). Now character con-

siderations force the structure to be given by
L(1,0) ® L(1,0) ~ T(2,0)

where T(2,0) = [(0, 1), (2,0), (0,1)]. By symmetry we also have
L(0,1) ® L(0,1) ~ T(0,2)

where T(0,2) = [(1,0), (0,2), (1,0)].

L(1,0) ® L(0,1) is tilting and has a direct summand isomorphic to T(1,1) =
L(1,1). By character considerations it follows that there is one other indecompos-
able summand, namely T(0,0) = L(0,0). Hence

L(1,0) ® L(0,1) ~ T(0,0) ® T(1,1).

L(1,0) ® L(1,1) is tilting and has a direct summand T(2,1). Self-duality of
T(2,1) forces a copy of L(1,0) at the top, extending L(0,2). This, along with the
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structure of the Weyl modules and known Ext information forces the structure of

T(2,1) to be as given in the statement of Proposition 3.2(b), and also forces
L(1,0) ® L(1,1) ~ T(2,1).

By symmetry we obtain also
L(0,1) ® L(1,1) =~ T(1,2).

Finally, L(1,1) ® L(1, 1) is tilting, with a direct summand isomorphic to T(2,2).
The highest weights of all simple composition factors of the tensor product are in
the same linkage class, excepting (1, 1), which appears with multiplicity 2. So two
copies of T(1, 1) split off. Moreover, T(2,2) has a submodule isomorphic to A(2,2),
thus contains L(0,0) in the socle. This forces another copy of L(0,0) at the top of
T(2,2), and this along with known Ext information and the structure of the Weyl
modules forces the structure of T(2,2) to be as given in Proposition 3.2(b), and

also forces

L(1,1) ® L(1,1) ~ T(2,2) @ 2T(1,1).

All the claims in Proposition 3.2(a), (b) are now clear. It remains to verify
the claim in (c). It is known that Donkin’s conjecture holds for SLs, as discussed
at the beginning of 2.4, so T((p — 1)p + A) is as a GyT-module isomorphic to
Q1((p — 1)p + woA) for any A € X;. Thus T(2,1), T(1,2), and T(2,2) each has
a simple G17T-socle of restricted highest weight. For T(2,0) and T(0,2) one can
argue by contradiction, using the fact [5, Proposition (1.5)] that truncation to
an appropriate Levi subgroup L maps indecomposable tilting modules for G onto
indecomposable tilting modules for L. Thus T(2,0) and T(0, 2) truncate to T(2) for
L ~ SLy, which is known to have simple LiT-socle and length three. If T(2,0) or
T(0,2) did not have simple G1T-socle then the same would be true of the truncation,
since no composition factors are killed under truncation. Claim (c) for the remaining

cases is trivial.

4. Results for p =3

In characteristic 3 several of the Weyl modules one must consider are non-generic
due to the proximity of their highest weight to the upper wall of the lowest p2-
alcove. This leads ultimately to examples of non-rigid tilting modules. Another
complication is that the G;T-socles of two direct summands of the tensor square

of the Steinberg module fail to be simple.

4.1. Structure of certain Weyl modules for p = 3. We record the structure

of certain Weyl modules needed later. The uniserial Weyl modules that turn up in
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our tensor product decompositions have structure given by

A(0,0) = L(0,0), A
A(2,1)=L(2,1), A

1,

A(1,1)
A(4,0)
A(5,0)

(5,

(1,
(4,0
(5,0

[
[
[

A(372) = [(372)7 (173)7 (23 1)]7 A(670) = [(670)7 (47 1)7( ) )]

A(4,2) =1[(4,2),(0,4),(2,0)], A(6,2)

[(6,2), (4,3),(1,0), (5,1)].

We note that the structure of A(6,2) is needed only in the Appendix. The non-

uniserial cases we need have structure

(4,1)
PN
A4,1) =] ©3) ©0) @0
~N |7
(11)
(33)
\
(0,0
PN
A(3,3)=| 14 @ |,
\ \
(0,3) (0,0) (3,0)
~N |7
(171)

A(4,4)

(0,5)

(4,3)
\
(170)

(5,1)

N

(1,4)

~N
(0,0)

As for the case p = 2, these structures were obtained by explicit calculations in the

hyperalgebra, using GAP to do the calculations.

4.2. Restricted tensor product decompositions for p = 3. The indecompos-

able decompositions of restricted tensor products for p = 3 is given below. We omit

any decomposition of the form L(A) ® L(u) where one of A, p is zero, and we omit

all cases that follow by applying symmetry to a case already listed.

Proposition. Let p = 3.

(a) The indecomposable direct summands of tensor products of non-trivial re-

stricted simple SLs-modules are as follows:
L(1,0) ® L(1,0) ~ T(2,0) ® T(0,1);

(1)
(2)
3)

L(1,0) ® L(0,1) ~ T(1,1);
L(1,0) ® L(2,0) ~ T(3,0);
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(4) L(1,0)®L(1,1) ~ T(2,1) & T(0,2);

(5) L(1,0)®L(0,2) ~ T(1,2) & T(0, 1);

(6) L(1,0)®L(2,1) ~ T(3,1) & T(2,0);

(1) L(L,0)®L(1,2) ~ T(2,2) & T(0,3);

(8) L(1,0)®L(2,2) ~ T(3,2);

(9) L(2,0)® L(2,0) ~ T(4,0) & T(2,1);

(10) L(2,0) ® L(1,1) ~ T(3,1) @ T(0, 1);

(11) L(2,0) ® L(0,2) ~ T(2,2) & T(1,1);

(12) L(2,0)®L(2,1) ~ T(4,1) & T(2,2);

(13) L(2,0) ® L(1,2) ~ T(3,2) & T(0,2) & T(1,0);

(14) L(2,0) ® L(2,2) ~ T(4,2) @ T(2,3);

(15) L(1,1) ® L(1,1) ~ T(2,2) & T(0,0) & M;

(16) L(1,1) ® L(2,1) ~ T(3,2) @ T(4,0) & T(1, 0);

(17) L(1,1) ® L(2,2) ~ T(3,3) & T(2,2);

(18) L(2,1) ®L(2,1) ~ T(4,2) & T(5,0) & T(2,3) & T(3,1);
(19) L(2,1) ® L(1,2) ~ T(3,3) @ 2T(2,2) ® T(1, 1);

(20) L(2,1) ® L(2,2) ~ T(4,3) & 2T(3,2) & T(2, 4);

(21) L(2,2) ® L(2,2) ~ T(4,4) & T(3,3) & T(5,2) & T(2,5) & 3T(2,2).

Thus the family § is in this case given by the twenty-five tilting modules
{T(a,b) : 0 < a,b < 4} along with the siz “exceptional” modules

{T(5,0), T(0,5), T(5,2), T(2,5), L(1,1), M}.

All members of § except L(1,1) and M are tilting modules.

(b) The uniserial members of § have the following structure:

T(0,0) =[(0,0)]; T(1,0) =[(1,0)]; T(2,0) = [(2,0)};

T(1,1) = [(0,0),(1,1),(0,0)]; T(2,1) =[(2, 1)

T(4,0) = [(0,2),(4,0),(0,2)]; T(3,1) =[(1,2),(3,1),(1,2)};

T(27 2) = [(2? 2)]; T(57 0) = [(Oa 1)7 (5’ 0)’ (07 1)}; T(5? 2) = [(57 2)}

The structure of the non-uniserial rigid members of § is given below (symmet-
ric cases omitted):

(1,1) (1,1)

e N PN
(3,0) (0,0) (3,00 (0,00 (0,3)
N e ~N S
(1,1) (1,1)
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(2,1) (1,1) (2,0)
| PERERN |
(1,3) (0,3)  (0,0) (3,0) (0,4)
PN e I RN PN
(2,1) (3,2) (1,1) (4,1) (1,1) (2,0) (4,2)
~ N~ S = N~ S
(1,3) (3,0) (0,0) (0,3) (0,4)
| N |
(2,1) (1,1) (2,0)

all of which are tilting modules excepting the module M (which does not have a
highest weight) pictured at the upper right. Finally, there are four members of
5, namely T(3,3), T(4,3), T(3,4), and T(4,4), whose structure is not rigid,
which are not pictured. Analysis of their structure requires other methods (see
the Appendiz).

(¢) Each member of § except T(5,2) = L(5,2), T(2,5) = L(2,5) has simple G1T -
socle (and head) of highest weight belonging to X .

Remark. The Alperin diagram for T(4,1) given above is one of several possibilities.
When a module has a direct sum of two or more copies of the same simple on a

given socle layer, there may be more than one diagram.

The proof of the proposition will be given in 4.4-4.12. First we consider some

consequences and look at a few examples.

Corollary. Let p = 3. Given arbitrary dominant weights \, i write X = > Mp?,
w=">"pp? with each N, pu? € X;.

(a) In the decomposition (1.1.3), each term in the direct sum not involving a tensor
factor of the form T(5,2), T(2,5) is indecomposable.

(b) L(A) ® L(p) is indecomposable if and only if for each j > 0 the unordered
pair {N, @7} is one of the cases {(1,0),(0,1)], {(1,0),(2,0)], {(1,0),(2,2)],
{(0,1),(0,2)], {(0,1),(2,2)] or one of M, p? is the zero weight (0,0).

(c) Let m be the mazimum j such that at least one of N, u/ is non-zero. Then
L(A) ® L(p) is indecomposable tilting, isomorphic to T(\+ p), if and only if:
(i) for each 0 < j < m — 1, one of M,/ is minuscule and the other is the
Steinberg weight (2,2), and (i) {\™, u™} is one of the cases listed in part (b).

Proof. The proof is entirely similar to the proof of the corresponding result in the
p = 2 case. We leave the details to the reader. O

Ezamples. (i) We work out the indecomposable direct summands of L(5,4)®L(4, 5),

using information from part (a) of the proposition and following the procedure of
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Section 1.1:
L(5,4) ® L(4,5)
L(2,1) ® L(1, 1)) ® (L(1,2) ® L(1,1)M)

L

(L(

(L(2,1) @ L(1,2)) ® (L(1,1) ® L(1,1))"
~ (T(3

(

12

12

12

T(3,3) @ 2T(2,2) & T(1,1)) @ (T(2,2) & T(0,0) & M)"

T(3,3) ® T(2,2)!Y) @ (T(3,3) @ T(0,0)M) @ (T(3,3) @ M)
®2(T(2,2) ® T(2,2)M) @ 2(T(2,2) ® T(0,0)) & 2(T(2,2) ® M)
@ (T(1,1) @ T(2,2)") @ (T(1,1) ® T(0,0))) @ (T(1,1) @ M)
~ T(9,9) ® T(3,3) @ (T(3,3) ® M) @ 2T(8,8) @ 2T(2,2)

©2(T(2,2) e M) @ T(7,7) ® T(1,1) ® (T(1,1) @ MM).

12

We applied (2.4.4) to get the last line of the calculation.

(ii) Mlustrating part (b) of the corollary we have L(3,1) ® L(1,3) ~ L(0,1) ®
L(1,00M @ L(1,0) @ L(0, )M ~ T(1,1) ® T(1,1)!! , which is indecomposable but
not tilting.

(iii) To illustrate part (c) of the corollary we have for instance L(4,0) ® L(8,8) ~
T(12,8) or L(5,2) ® L(5,4) ~ T(10, 6).

4.3. We now discuss the problem of computing the indecomposable direct sum-
mands (and their multiplicities) of L(A\) ® L(u) for arbitrary A,u € X, in the
more difficult case where a direct summand on the right hand side of (1.1.3) is not
necessarily indecomposable.

It will be convenient to introduce the notation g for the set §—{T(5,2),T(2,5)}.
Then Corollary 4.2(a) says that a direct summand S = ;5 I][J] in (1.1.3) is
indecomposable whenever all its tensor factors I; belong to Fo.

Consider a summand S = @), Ij[j] in (1.1.3) which is possibly not indecompos-
able. By Corollary 4.2(a), such a summand must have one or more tensor multipli-
cands of the form T(5,2) or T(2,5). Suppose that in the summand in question I}, is
T(5,2) or T(2,5). We use the fact that T(5,2) = L(5,2) ~ L(2,2) ® L(1,0)!!, and
similarly T(2,5) = L(2,5) ~ L(2,2) ® L(0, 1)), Thus we are forced to consider the
possible splitting of L(1,0) ® Ix11 or L(0,1) ® Ix41 in ‘degree’ k + 1. (By ‘degree’
here we just mean the level of j in the twisted tensor product occurring in a direct
summand of the right-hand-side of (1.1.3).) There are two cases.

We consider first the case where ;1 is not tilting, i.e., Ixq is either L(1,1) or
M. So we need to split L(1,0)®L(1,1), L(0,1)®L(1,1), L(1,0)®M or L(0,1) ® M.
The first two cases are already covered by Corollary 4.2(a), so we just need to

consider the last two. But a simple calculation with characters and consideration
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of linkage classes shows that
L(1,0) @ M~ T(3,1) & T(1,0) & T(4,0);

(4.3.1)
L(0,1) ® M ~ T(1,3) @ T(0, 1) & T(0, 4)

and the summands are once again members of § with restricted socles, so these
cases present no problem.

We are left with the case where Ii1q is tilting. Then this splitting can be
computed since L(1,0) = T(1,0) and L(0,1) = T(0,1) are tilting, so we are just
splitting a tensor product of two tilting modules into a direct sum of indecomposable
tilting modules, which can always be done. This new decomposition produces only

tilting modules in the family § except when Ij41 is one of the following cases:
T(5,0),T(4,1),T(4,2),T(5,2),T(4,3), and T(4,4)

or one of their symmetric cousins. Up to lower order terms which again belong to
5, these possibilities, when tensored by L(1,0) or L(0, 1), produce the new tilting
modules

T(6,0),T(5,1),T(6,2),T(5,3), and T(5,4) (4.3.2)
and of course their symmetric versions. Now by Donkin’s tensor product theorem

we have a twisted tensor product decomposition for the last three of these, in terms

of members of §:

12

T(6,2) ~ T(3,2) @ T(1,0)",

T(5,3) ~ T(2,3) ® T(1,0)1, (4.3.3)
T(5,4) = T(2,4) © T(1,0)!".

Hence, those summands and their symmetric versions present no problem. Finally,

if T(5,0) or T(4,1) is tensored by L(1,0) then, modulo lower order terms which

belong to §, we obtain the new summands T(6,0) and T(5,1) which are not mem-

bers of § and do not admit a twisted tensor product decomposition. However,

these summands must have simple restricted G17T-socles, since they are embedded

in T(4,4) and T(4, 3), respectively. This is shown by translation arguments, similar
to those in 4.12 ahead. Thus we have proved the following result.

Proposition. Let p =3 and G = SL3.

(a) Any tensor product of the form L(1,0) ® I or L(0,1) ® I, where I is an in-
decomposable tilting module in §, is expressible as a twisted tensor product

of modules which are either tilting modules in §o or are one of the “extra”
modules T(6,0), T(5,1), T(0,6) or T(1,5).

(b) The extra modules have simple restricted G1T-socles.
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(c) For general \,;n € X, the indecomposable direct summands of L(\) ® L(u)

are all expressible as twisted tensor products of modules from the family

3 = %o U{T(6,0),T(5,1),T(0,6), T(1,5)}
={T(a,b): 0 < a,b<4} U

{T(6,0),T(5,1),T(5,0),T(0,6),T(1,5), T(0,5),L(1,1), M}.

Note that all members of § have simple G1T-socle of restricted highest weight.

FEzample. We consider an example where the direct summands on the right hand

side of (1.1.3) are not all indecomposable:

L(2,2) @ L(5,2) ~ L(2,2) ® L(2,2) ® L(1,0)

~ (T(4,4) ® T(3,3) @ T(5,2) ® T(2,5) @ 3T(2,2)) ® L(1,0)!
~ T(7,4) ® T(6,3) & T(8,2) & T(2,5) & T(5,5) ® 3T(5, 2).

The second line comes from equation (21) in Proposition 4.2(a), and to get the last

line one applies (2.4.4) repeatedly, using Proposition 4.2(a) again as needed. For

instance, using equation (1) from Proposition 4.2(a) we have
T(5,2) @ L(1,0)!) ~ L,(2,2) @ (L(1,0) @ L(1,0))"
~L(2,2) ® (T(2,0) ® T(0, 1))
~ T(8,2) & T(2,5)
and using equation (2) from Proposition 4.2(a) we have
T(2,5) ® L(1,0) ~ L,(2,2) ® (L(0,1) @ L(1,0))"
~1,(2,2) @ T(1, M ~ T(5,5).

4.4. We now embark upon the proof of Proposition 4.2. First we compute the

composition factor multiplicities of the restricted tensor products.

Xp(A) = L(A) is the formal character of L(A).)

(1) Xp(l’o) ’ Xp(lv 0) = XP(2>0) + XP(Ov 1);

(2) X;D(lvo) : Xp(07 1) = X:D(lv 1)+ 2Xp(070)§

(3) Xp(l’o) ’ XP(Q’ 0) = XP(S,O) + 2Xp(17 1) + Xp(070)§

(4) xp(L,0) - xp(1,1) = xp(2,1) + xp(0,2);

(5) xp(1,0) - xp(0,2) = xp(1,2) + x,(0, 1);

(6) Xp(l’o) ’ XP(Zv 1) = Xp(gv 1)+ 2XP(17 2) + XP(270)§

(7) XP(LO) : Xp(l’ 2) = Xp(27 2) + XP(07 3) + 2Xp(17 1) + XP(O’ 0)5

(8) xp(1,0) - xp(2,2) = xp(3,2) + 2xp(1,3) + 3xp(2, 1);

(9) xp(2,0) - xp(2,0) = xp(4,0) + xp(2,1) + 2x,(0,2);
(10) xp(2,0) - xp(1,1) = xp(3,1) + 2xp(1, 2) + xp(0, 1);
(11) X;D(Qvo) : Xp(07 2) = X:D(27 2) + XP(L 1) + 2Xp(070>3

(Recall that
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(12) xp(2,0) - xp(2,1) = xp(4, 1) + xp(2,2) + 2xp(0, 3) + 2x,(3,0) + 4xp(1,1) +
2x,(0,0);

(13) xp(2,0) - xp(1,2) = xp(3,2) + 2xp(1,3) + 3xp(2, 1) + Xp(0,2) + xp(1,0);

(14)  xp(2,0) - xp(2,2) = xp(4,2) + xp(2,3) + 2xp(0,4) + 2x,(3,1) + 3x,(1,2) +
3Xp( 50)

(15) xp(1,1) - xp(1,1) = xp(2,2) + xp(0,3) + xp(3,0) + 2xp(1, 1) + 2x,(0, 0);

(16) xp(1,1) - xp(2,1) = xp(3,2) + 2xp(1,3) + xp(4,0) + 3xp(2, 1) + 2x,(0,2) +

( ’0)7

(17) xp(1,1) - xp(2,2) = xp(3,3) + 2xp(1,4) 4+ 2xp(4, 1) + Xp(2,2) + 4x(0,3) +
4xp(3,0) + 6xp(1, 1) + 5x,(0,0);

(18) xp(2,1) - xp(2,1) = xp(4,2) + Xp(2,3) + 2xp(0,4) + xp(5,0) + 3xp(3,1) +
5xp(1,2) +3xp(2,0) + 2x,(0, 1);

(19) xp(2,1) - xp(1,2) = xp(3,3) + 2xp(1,4) + 2xp(4, 1) + 2xp (2, 2) + 4xp(0,3) +
Axp(3,0) + Txp(1,1) + Txp(0,0);

(20) xp(2,1) - xp(2,2) = xp(4,3) + xp(2,4) + 2xp(0,5) + 2x,(5,1) 4+ 2x,(3,2) +
4xp(1,3) + 2xp(4,0) + 6x,(2, 1) + 3x,(0,2) + 5x,p(1,0);

(21) xp(2,2) - xp(2,2) = xp(4,4) + Xxp(2,5) + 2xp(0,6) + xp(5,2) + 3xp(3,3) +

6xp(1,4)+2x,(6,0)+6x,(4, 1)+3x,(2, 2)+8x,(0, 3)+8x,(3, 0)+11x, (1, 1)+
15x, (0, 0).

It is important to proceed inductively through the cases, so that the structure
of smaller tilting modules is available by the time the argument reaches the higher,
more complicated, cases. We order the cases as listed in part (a) of Proposition 4.2.
In each case, one starts by partitioning the composition factors into blocks. This
amounts to looking at linkage classes of the highest weights of those composition
factors.

In cases (1)—(9), (11)—(14) the argument is entirely similar to the arguments
already used in characteristic 2, in the proof of Proposition 3.2. In these cases we
know that the tensor product in question is tilting, and it turns out that each linkage
class determines an indecomposable direct summand. This uses the contravariant
self-duality of the tilting modules and the structural information in 4.1 for the
Weyl modules, which forces a lower bound on the composition length of the tilting
module in question, and it turns out that this lower bound agrees with the upper
bound provided by the linkage class.

As an example, let us examine the argument in the case (12), for the tensor
product L(2,0) ® L(2,1). The linkage classes are

{(2,2)} U{(4,1),(3,0),(0,3), (1,1),(0,0)}.

By highest weight considerations, we must have a single copy of T(4,1) in L(2,0) ®
L(2,1). Linkage forces a copy of L(2,2) = T(2,2) to split off as well. Now T(4,1)
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has a submodule isomorphic to A(4, 1), so L(1,1) is contained in its socle. By self-
duality of T(4, 1), we must have another copy of L(1,1) in the top of T(4,1), so we
are forced to put a copy of A(1,1) at the top of T(4,1). Looking at the structure of
A(4,1) in 5.1.6, we see that T(4,1) must also have at least one copy of A(3,0) and
A(0,3) in its A-filtration. At this point we are finished, since this accounts for all
available composition factors (with their multiplicities) from the linkage class, so we
conclude that L(2,0) ®L(2,1) ~ T(4,1) & T(2,2). The structure of T(4, 1) is nearly
forced, because of its self-duality, the fact that all the Ext groups between simple
factors is known, and the fact that T(4,1) must have both A and V-filtrations. In
4.12 we will see that T(0, 3) is isomorphic to a submodule of T(4,1), which finishes
the determination of the structure of T(4, 1).

4.5. In case (10), one cannot immediately conclude that L(2,0) @ L(1, 1) is tilting
since L(1, 1) is not tilting, so we must proceed differently. However, we observe the

following, which immediately implies that in fact our tensor product is tilting.

Lemma. LetV be a simple Weyl module and let A(X) be a Weyl module of highest
weight \. If the composition factors of V ® rad A(A) and V ® L(A) lie in disjoint
blocks, then V @ L(X) is tilting.

Proof. V ®A()) has a A-filtration, by the Wang—Donkin-Mathieu result (see [17,
I1.4.21]). Now as V ®@rad A(A) and V ® L(A) have no common linkage classes there
can be no non-trivial extensions between these modules, by the linkage principle.
Thus V @ A(A) = (V @rad A(X)) @ (V @ L(A)). As V ® A()) has a A-filtration
this implies V' ® L(\) does also. As it is the tensor product of two simple (therefore
contravariantly self dual) modules it is itself contravariantly self dual and so has a
V-filtration. Therefore it is tilting. O

Now we may proceed as usual. Looking at the character of L(2,0)®L(1, 1) we find
that there are two linkage classes for the highest weights of the composition factors,
namely {(0,1)} and {(3,1),(1,2)}. Since the multiplicity of L(0,1) is 1, it must
give a simple tilting summand T(0,1). Now T(3,1) must be a summand by highest
weight consideration, and the usual argument forces it to have at least composition
length three, which forces equality of the upper and lower bounds, so the structure
is T(3,1) = [(1,2),(3,1),(1,2)] and we have L(2,0) ® L(1,1) ~ T(3,1) ® T(0,1).
This takes care of case (10) in our list.

Case (16) follows similarly, making use again of the above lemma to conclude
that L(1,1) ® L(2,1) is tilting. We note that at this stage we may assume that
the structure of T(3,2) and T(4,0) are already known, since they come up in the
earlier cases (8), (9). So one easily concludes from this and the linkage classes that
L(1,1) ® L(2,1) ~ T(3,2) ® T(4,0) & T(1,0).
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4.6. We now consider case (15). Since L(1, 1) is not tilting, it is unclear whether
or not L(1,1) ® L(1,1) is tilting. In fact it is not, and analysis of this case is more
difficult. First, looking at the character and the linkage classes (there are two) we
observe that a copy of the Steinberg module T(2,2) = L(2, 2) splits off as a direct
summand. The remaining composition factors of the tensor product all lie in the
same linkage class, but it turns out that a copy of the trivial module splits off, as

we show below.

From properties of duals and previous calculations it follows that
dimx Homg(L(0,0),L(1,1) ® L(1,1))
= dimg Homg (L(0,0) ® L(1,1),L(1,1)) (1)
= dimg Homg (L(1,1),L(1,1)) = 1;

dimy Homg(T(1,1),L(1,1) ® L(1,1))
= dimg Homg (L(1,0) ® L(0,1),L(1,1) ® L(1,1))
= dimy Homg(L(1,1) ® L(0,1),L(1,1) ® L(0, 1))
= dimg Homg(L(1,2) & L(2,0),L(1,2) & L(2,0))

Il
o

dimg Home(L(3,0), L(1,1) ® L(1, 1))
= dimx Hom¢g(L(1,1) ® L(3,0),L(1,1)) (3)
= dimg Homg(L(4,1),L(1,1)) =0

and, by symmetry, an equality similar to (3) holds, in which (3,0) is replaced by
(0,3). We also observe that

Home(L(1,1),L(1,1) ® L(1, 1)) ~ Homg(L(1,1) ® L(1, 1), L(1,1))  (4)

By (1), (3), and (4) we see that the socle of L(1,1) ® L(1,1) is either: (a) L(2,2) ®
L(0,0), or (b) L(2,2) ® L(0,0) ® L(1,1).

From the structure of the Weyl modules in question we know (see e.g. [17,
I1.4.14]) all the Ext! groups between the simple modules of interest here. Com-
bining this with self-duality would force the structure of the non-simple direct

summand of L(1,1) ® L(1,1) to be given by one of the following diagrams:

(070)
\
(171)
e N (1,1)
(3,0) (0,3) N
N e (3,0) (0,00 (0,3)
(1,1) ~N S
\ (1,1
(0,0)
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where the left diagram corresponds with possibility (a) and the right with possibility
(b). However, the left diagram would contradict (2). Hence, possibility (a) is in
fact ruled out, and we are left with possibility (b). It follows that L(1,1) ®L(1,1) ~
L(2,2) ® L(0,0) ® M, as claimed.

4.7. There are just five cases remaining in the proof of Proposition 4.2, namely
cases (17)—(21). We now consider case (17). The module L(1,1) ® L(2, 2) is tilting
by Lemma 4.5, so by highest weight considerations T(3,3) is a direct summand.
This is also justified by Pillen’s Theorem (see 2.1). The character of T(3,3) may
be computed by (2.2.2), which shows that it has a A-filtration with A-factors

isomorphic to
A(3,3), A(4,1), A(1,4), A(3,0), A(0,3), A(1,1)

each occurring with multiplicity one. This accounts for all the composition factors
appearing in the character of L(1,1) ® L(2,2), except for one copy of the Steinberg
module T(2,2) = L(2,2). Hence we conclude that

L(1,1) ® L(2,2) ~ T(3,3) @ T(2,2).

4.8. L(2,1)®L(2,1) is tilting since L(2, 1) is, so by highest weight considerations
a copy of T(4,2) splits off as a direct summand. The structure of T(4,2) was
determined in a previous case of the proof. Subtracting its character from the
character of L(2,1)®L(2, 1), we see that the highest weight of what remains is (5, 0),
s0 a copy of T(5,0) must split off as well. The linkage class of (5,0) contains only two
weights {(5,0), (0,1)} and from this and the known structure of the Weyl modules
it follows easily that T(5,0) is uniserial with structure T(5,0) = [(0, 1), (5,0), (0, 1)].
Now highest weight and character considerations force the remaining summands to

be one copy of T(2,3) and one copy of T(3,1). Hence
L(2,1) ®L(2,1) ~ T(4,2) ® T(5,0) ® T(2,3) ® T(3, 1).

We note we can assume that T(3,1) and T(2,3) are known at this point, since they
arise in earlier cases of the proof. (Actually, to be precise T(2,3) doesn’t arise in

any earlier case, but its symmetric cousin T(3,2) does.)

4.9. L(2,1) ® L(1,2) is tilting since both L(2,1) and L(1,2) are, so by highest
weight considerations a copy of T(3, 3) splits off as a direct summand. The character
of T(3,3) was computed already in 4.7, so by character considerations one easily
deduces that

L(2,1) ® L(1,2) ~ T(3,3) & 2T(2,2) & T(1, 1).

Of course, the character of T(1, 1) is already known by an earlier case of the proof.
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4.10. L(2,1) ® L(2,2) is tilting since both L(2,1) and L(2,2) are, so by highest
weight considerations a copy of T(4,3) splits off as a direct summand. From [8,

§2.1, Lemma 5] we compute its A-factors to be
A(4,3), A(5,1), A(0,5), A(L,0).

One sees also that T(4,3) has simple socle of highest weight (1,0) by arguments
similar to those in 4.7. From character computations one now shows that

L(2,1) ® L(2,2) ~ T(4,3) & 2T(3,2) & T(2,4).

The structure of T(3, 2) is available by a previous case of the proof, and the structure

of T(2,4) follows by symmetry from that of T(4,2), again a previous case.

4.11. L(2,2)®L(2,2) is tilting since L(2, 2) is, so by highest weight considerations
a copy of T(4,4) must split off as a direct summand. The A-factor multiplicities of
T(4,4) are computed by [8, §2.1, Lemma 5] to be

A(4,4), A(6,0), A0,6), A(3,3), A(4,1), A(1,4), A(1,1), A(0,0)

each of multiplicity one. From this, using the character of L(2,2) ® L(2, 2) it follows
by highest weight considerations, after subtracting the character of T(4,4), that a
copy of T(3,3) must also split off as a direct summand. Then it easily follows that

L(2,2) ® L(2,2) ~ T(4,4) & T(3,3) & T(5,2) & T(2,5) & 3T(2,2)

where T(5,2) = L(5,2), T(2,5) = L(2,5), and T(2,2) = L(2,2).
At this point the proof of Proposition 4.2(a), (b) is complete.

4.12. Tt remains to prove the claim in part (c) of Proposition 4.2. It is known
that Donkin’s conjecture holds for SL3, as discussed at the beginning of 2.4, so
T((p — 1)p + A) is as a G1T-module isomorphic to Ql((p — 1)p + woA) for any
A € X;. Thus T(a,b) has simple G1T-socle of restricted highest weight, for any
2 < a,b < 4. Moreover, the claim is true of T(0,0), T(1,0), T(2,0), T(2,1), L(1,1)
and their symmetric counterparts, since these are all simple G-modules of restricted

highest weight.
For A = (1,1) and (5, 0) one easily checks by direct computation that A(X), which

is a non-split extension between two simple G-modules, remains non-split upon
restriction to G1T. It then follows that T(\) has simple G1T-socle of restricted
highest weight in each case.

For A = (4,0) and (3, 1) one could argue as in the preceding paragraph, or restrict
to an appropriate Levi subgroup, as in the last paragraph of 3.3.

The remaining cases, up to symmetry, are T(3,0), T(4,1), and M. We ap-
ply the translation principle [17, ILE.11]. Observe (from their structure) that
T(0,2) embeds in T(4,0), which in turn embeds in T(2,4). Picking A = (0,0) and
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@ = (=1,1) in the closure of the bottom alcove, observe that applying the (ex-
act) functor T:‘ to these embeddings, we obtain embeddings of T(0,3) in T(4,1),
and T(4,1) in T(3,3). Since T(3,3) has simple G1T-socle of restricted highest
weight, it follows that the same holds for T(0,3) and T(4,1). The cases T(3,0)
and T(1,4) are treated by the symmetric argument. Finally, we observe that
dimg Homeg, 7(L(0,0),L(1,1) ® L(1,1)) = 1, by a calculation similar to 4.6(1).
This, along with 4.6, shows that M remains indecomposable on restriction to G T,
with socle and head isomorphic to L(1, 1), and with 7 copies of 1.(0,0) in the middle
Loewy layer. The proof of Proposition 4.2 is complete.

4.13. Discussion. We now discuss the remaining issue in characteristic 3: the
structure of the tilting modules T(A) for A = (3,3), (4,3), (3,4), and (4,4). These
tilting modules are in fact S-modules for the Schur algebra S = Sk (3,7) in degree
r =29,10,11, 12, respectively. (See [13], [20] for background on Schur algebras.)
Thus, in order to study the structure of T(\) one may employ techniques from
the theory of finite dimensional quasi-hereditary algebras. Now the simplest cases
(in terms of number of composition factors) are T(4,3) for S(3,10) and T(3,4) for
S(3,11). As these modules are symmetric, it makes sense to focus on the smaller
Schur algebra S(3,10) and thus T(4,3). In fact, it is enough to understand the
block A of S(3,10) consisting of the six weights (10,0), (6,2), (4,3), (5,1), (0,5),
and (1,0). (Tt is easily seen that this is a complete linkage class of dominant weights
in S(3,10), for instance by drawing the alcove diagrams.) To construct T(4,3) we
must “glue” together the A-factors in a way that results in a contravariantly self-

dual module. Looking at the diagrams in Figure 1 below picturing the various Weyl

(1.0)
(0,5) (5,1)
(1,0) (1,0)
(4.3)
(1’0)
yd AN
(0,5) (5,1)

N e
(1,0)

FIGURE 1. Weyl filtration factors of T(4, 3)

modules in the filtration, we see that it is impossible to do this in a rigid way. There
are three copies of L(1, 0) above the middle factor L(4, 3) and only two below. Thus,
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there must be two copies of L(1,0) lying immediately above L(4,3) when viewing
the radical series, and two copies lying immediately below L(4, 3) when viewing the
socle series. This implies that T(4,3) is not rigid. To understand the structure of
T(4,3) one may apply Gabriel’s theorem to find a quiver and relations presentation
for the basic algebra of the block A, or an appropriate quasi-hereditary quotient
thereof. This is carried out in the Appendix. The other cases could be treated
similarly.

Note that none of T(4,3), T(3,4), T(3,3), or T(4,4) is projective as an S-
module, because if so, the reciprocity law (P(A): A(u)) = [V(u): L(N)] (see e.g. [6,
Proposition A2.2]) would be violated.
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APPENDIX: THE SL;-MODULE 7'(4,3) FOR p =3
C. M. Ringel

Let k be an algebraically closed field of characteristic p = 3. Following Bowman,
Doty and Martin, we consider rational SLs-modules with composition factors L(\),
where A is one of the weights (1,0), (0,5), (5,1), (4,3), (6,2). Dealing with a
dominant weight (a,b), or the simple module L(a,b), we usually will write just
ab. The corresponding Weyl module, dual Weyl module, or tilting module, will be
denoted by A(ab), V(ab) and T'(ab), respectively.

The paper [BDM] by Bowman, Doty and Martin describes in detail the structure
of the modules A(A), V() for A = 10, 05, 51, 43, 62 and also T'(10), T(05), T'(51)
and it provides the factors of a A-filtration for 7'(43). This module T(43) is still
quite small (it has length 10), but its structure is not completely obvious at first
sight. The main aim of this appendix is to explain the shape of this module.

Let us call a finite set I of dominant weights (or of simple modules) an ideal
provided for any A € I all composition factors of T'(\) belong to I. The category
of modules with all composition factors in an ideal I is a highest weight category
with weight set I, thus can be identified with the module category of a basic quasi-
hereditary algebra which we denote by A(I). In order to analyse the module T'(43),
we need to look at the ideal I = {10, 05, 51,43}, thus at the algebra A(10, 05,51,43).

In order to determine the precise relations for A(10,05,51,43), we will have to
look also at the module T'(62), see section 4. Note that {10, 05, 51, 43, 62} is
again an ideal, thus we deal with the algebra A(10,05,51,43,62).

The use of quivers and relations for presenting a basic finite dimensional algebras
was initiated by Gabriel around 1970, the text books [ARS] and [ASS] can be used
as a reference. The class of quasi-hereditary algebras was introduced by Scott and
Cline-Parshall-Scott; for basic properties one may refer to [DR] and [R2]. The
author is grateful to S. Doty and R. Farnsteiner for fruitful discussions and helpful
suggestions concerning the material presented in the appendix.

1. The main result

Deviating from [BDM], we will consider right modules. Thus, given a finite-
dimensional algebra A, an indecomposable projective A-module is of the form eA
with e a primitive idempotent. The algebras to be considered will be factor algebras
of path algebras of quivers and the advantage of looking at right modules will be

that in this way we can write the paths in the quiver as going from left to right.
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Proposition. The algebra A(10,05,51,43) is isomorphic to the path algebra of the
quiver
o 00
%‘/ gl
Q = Q(10,05,51,43) 10 ——>143

NW

s o1

modulo the ideal generated by the following relations

da=0, =0, [a=0, [1l-—y)F=0,
Yv=0, (e -pp)=0, (aad'—pF)y=0, +aa'y=0.

We are going to give some comments before embarking on the proof.

(1) Since the quiver Q(10,05,51,43) is bipartite, say with a (+)-vertex 10 and
three (—)-vertices 05, 51, 43, possible relations between vertices of the same parity
involve paths of even lengths, those between vertices with different parity involve
paths of odd lengths. Our convention for labelling arrows between a (+)-vertex a
and a (—)-vertex b is the following: we use a greek letter for the arrow a — b and
add a dash for the arrow b — a.

(2) The assertion of the proposition can be visualized by drawing the shape of the
indecomposable projective A-modules. The indecomposable projective A-module
with top A will be denoted by P(\) = exA, where ey is the primitive idempotent
corresponding to A\, and we will denote the radical of A by J.

10
/ | \
05 51 43 05 51 4I3
| |
1|0 1|0 1[0 10 10 10
~N 7 VAR | | VAR
43 05 51 43 43 05 51
[ N\ 7/ l | N\ 7/
10 10 10 10 10
e ~N 7/ N\ VAR
05 51 05 51 05 51
~N e N\ 7/ \ 7/
10 10 10

These are the coefficient quivers of the indecomposable projective A-modules with
respect to suitable bases. In addition, the proposition asserts that all the non-zero
coefficents can be chosen to be equal to 1. Note that this means that A has a basis
B which consists of a complete set of primitive and orthogonal idempotents as well
as of elements from the radical J, and such that B is multiplicative (this means: if
u,v € B, then either uv = 0 or else uv € B).

For the convenience of the reader, let us recall the notion of a coefficient quiver

(see for example [R3]): By definition, a representation M of a quiver @ over a
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field k is of the form M = (My;My)s,a; here, for every vertex x of ), there is
given a finite-dimensional k-space M, say of dimension d,, and for every arrow
o : x — y, there is given a linear transformation M, : M, — M,. A basis B of M
is by definition a subset of the disjoint union of the various k-spaces M, such that
for any vertex x the set B, = BN M, is a basis of M,. Now assume that there is
given a basis B of M. For any arrow « : & — y, write M, as a (dy x dy)-matrix
M, 5 whose rows are indexed by B, and whose columns are indexed by B,. We
denote by M, 5(b,b") the corresponding matrix coefficients, where b € B,, b’ € B,,
these matrix coefficients M, 5(b,b") are defined by My (b) = >, cgb Ma (b, 0).
By definition, the coefficient quiver T'(M,B) of M with respect to B has the set
B as set of vertices, and there is an arrow (o, b,b’) provided M, g(b,b") # 0 (and
we call M, g(b,b") the corresponding coefficient). If b belongs to B, we usually
label the vertex b, by x. If necessary, we label the arrow («,b,b") by «; but since
we only deal with quivers without multiple arrows, the labelling of arrows could
be omitted. In all cases considered in the appendix, we can arrange the vertices in
such a way that all the arrows point downwards, and then replace arrows by edges.
This convention will be used throughout.

Note that there is a long-standing tradition in matrix theory to focus attention
to such coefficient quivers (see e.g. [BR]), whereas the representation theory of
groups and algebras is quite reluctant to use them.

Looking at the pictures one should be aware that the four upper base elements
form a complete set of primitive and orthogonal idempotents, thus these are the
generators of the indecomposable projective A-modules. Those directly below gen-
erate the radical of A, and they are just the arrows of the quiver (or better: the
residue classes of the arrows in the factor algebra of the path algebra modulo the
relations). Of course, on the left we see P(10), then P(05) and P(51), and finally,
on the right, P(43).

(3) The strange relation 3'(1 — v4')8 = 0 leads to the curved edge in P(51)
as well as in P(10). Note that the submodule lattice of P(51) would not at all
be changed when deleting this extra line — but its effect would be seen in P(10).
Namely, without this extra line, the socle of P(10) would be of length 3 (namely,
top radQP(lo) is the direct sum of three copies of 10, and the two copies displayed
in the left part are both mapped under 7 to 43, thus there is a diagonal which is
mapped under 7y to zero; without the curved line, this diagonal would belong to the
socle), whereas the socle of P(10) is of length 2.

(4) Looking at the first four relations presented above, one could have the feeling
of a certain asymmetry concerning the role of P(05) and P(51), or also of the role

of 05 and 51 as composition factors of the radical of P(51). But such a feeling is
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misleading as will be seen in the proof. The pretended lack of symmetry concerns
also our display of T'(43). Sections 7 and 8 will be devoted to a detailed analysis of
the module T'(43) in order to focus the attention to its hidden symmetries.

(5) Note that all the tilting A-modules are local (and also colocal):

T(10) = P(10)/(aA + BA+~A)
T(05) = P(10)/(BA+~A),
T(51) P(10)/(aA +~A),
T(43) P(10)/7A.

As we have mentioned, sections 7 and 8 will discus in more detail the module T'(43).

(6) A further comment: One may be surprised to see that one can find relations
which are not complicated at all: many are monomials, the remaining ones are

differences of monomials, always using paths of length at most 4.

2. Preliminaries on algebras and the presentation of algebras using

quivers and relations

Let ¢ be a natural number. Recall that the zero module has Loewy length 0 and
that a module M is said to have Loewy length at most t with t > 1, provided it
has a submodule M’ of Loewy length at most ¢t — 1 such that M/M’ is semisimple.
Given a module M, we denote by soc; M the maximal submodule of Loewy length
at most ¢, and by top! M the maximal factor module of Loewy length ¢. Of course,
we write soc = soc; and top = top!, but also top?M = M/radtM.

Let A be a finite-dimensional basic algebra with radical J and quiver Q. Let
us assume that @ has no multiple arrows (which is the case for all the quivers
considered here). For any arrow ¢ : i — j in @, we choose an element n(() €
e;Je; \ e;J%e;; the set of elements 1(¢) will be called a generator choice for A. In

this way, we obtain a surjective algebra homomorphisms
n:kQ— A

If p is the kernel of 7, then p = @” e;pe;, and we call a generating set for p
consisting of elements in Uij eipe; a set of relations for A. We are looking for a
generator choice for the algebra A(10,05,51,43) which allows to see clearly the
structure of T'(43). Usually, we will write ¢ instead of n(¢) and hope this will not
produce confusion. If ¢ € e;Je; \ e;J%¢; belongs to a generator choice, we obviously
may replace it by any element of the form ¢{ + d with 0 # ¢ € k and d € e;J%¢;

and obtain a new generator choice.
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3. The algebra B = A(10,05,51)

Consider a quasi-hereditary algebra B with quiver being the full subquiver of
Q(10,05,51,43) with vertices 10, 05, 51 and with ordering 10 < 05, 10 < 51.
It is well-known (and easy to see) that B is uniquely determined by these data.

The indecomposable projectives have the following shape

10
05 51 VRN
I I 05 51
10 10 I I
10 10

What we display are the again coefficient quivers of the indecomposable projective
B-modules considered as representations of k() with respect to a suitable basis.

We see that the algebra B is of Loewy length 3 and that it can be described by
the relations:

da=dB=Fa=038=0.

Of course, A(10) = V(10) = 10; and the modules A(05), A(51), V(05) and
V(51) are serial of length 2, always with 10 as one of the composition factors. This
means that the structure of the modules A(X), V(X), for A = 10, 05 51 can be read
off from the quiver (but, of course, conversely, the quiver was obtained from the
knowledge of the corresponding A- and V-modules).

Note that T'(05) is the only indecomposable module with a A-filtration with
factors A(10) and A(05), since Ext'(A(10),A(05)) = k. Similarly, T'(51) is the
only indecomposable module with a A-filtration with factors A(10) and A(51).

Let us remark that the structure of the module category mod B is well-known:
using covering theory, one observes that mod B is obtained from the category of
representations of the affine quiver of type 1122 with a unique sink and a unique
source by identifying the simple projective module with the simple injective module.
In mod B, there is a family of homogeneous tubes indexed by k \ {0}, the modules
on the boundary are of length 4 with top and socle equal to 10 and with rad/ soc =
05 @ 51. We will call these modules the homogeneous B-modules of length 4. (The
representation theory of affine quivers can be found for example in [R1] and [SS];

from covering theory, we need only the process of removing a node, see [M].)

4. The modules rad A(43) and V(43)/soc are isomorphic

We will use the following information concerning the modules A(43) and V(43),
see [BDM]. Both rad A(43) and V(43)/soc are homogeneous B-modules of length
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4, thus the modules A(43) and V(43) have the following shape

4|3 /10\
A(43) 10 V(43) 05 51
VAR N/
05 51 10
N S |
10 43

Here, we have drawn again coefficient quivers with respect to suitable bases. But
note that we do not (yet) claim that all the non-zero coefficients can be chosen to
be equal to 1.

In order to show the assertion in the title, we have to expand our considerations
taking into account also the weight 62. The existence of an isomorphism in question
will be obtained by looking at the tilting module T(62).

In dealing with a tilting module T'(u), there is a unique submodule isomorphic
to A(u), and a unique factor module isomorphic to V(). Let R(p) = rad A(u)
and let Q(u) be the kernel of the canonical map 7 : T'(u) — V(u)/soc. Note that
A(p) € Q(p) (namely, if 7(A(p)) would not be zero, then it would be a submodule
of V(u)/soc with top equal to p; however V(u)/soc has no composition factor of
the form ). Tt follows that R(u) C Q(r) and we call C(u) = Q(u)/R(p) the core of
the tilting module T'(u). Also, we see that u = A(u)/R(p) is a simple submodule
of C(p). In fact, p is a direct summand of C(u). Namely, there is U C T'(u)
with T'(p)/U = V(u). Then U C Q(p) and Q(u)/U = p. Since R(p) C Q)
and R(u) has no composition factor of the form p, it follows that R(u) C U.
Altogether, we see that U+ A(p) = Q(u) and UNA(u) = R(p). Thus Q(p)/R(p) =
U/R(p) & A(p)/R(p) = U/R(p) & p.

The module A(62) is serial with going down factors 62, 43, 10, 51, and the
module V(62) is serial with going down factors 51, 10, 43, 62, see [BDM], 4.1. Also
we will use that T(62) has A-factors A(51), A(43), A(62), each with multiplicity
one (and thus V-factors V(62), V(43), V(51)). To get the A-factors of T'(62),
one has to use [BDM], (2.2.2) along with the known structure of the Deltas (this

requires a small calculation, which is left to the reader.)
The quiver Q(10,05,51,43,62) of A(10,05,51,43,62) is

05
Q(10,05,51,43,62) 10 =——= 43
NN
o1 62

with ordering 10 < 05 < 43 < 62, and 10 < 51 < 43.
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Lemma 1. The core of T(62) is of the form (rad A(43)) ® 62 as well as of the
form (V(43)/soc) & 62.

Corollary. The modules rad A(43) and V(43)/soc are isomorphic.

Note that it is quite unusual that the modules rad A(A) and V(\)/soc are
isomorphic, for a weight .

Proof of Lemma 1. Let Ty C To C T(62) be a filtration with factors
Ty = A(62), To/Ty = A(43), T(62)/T = A(51).

Now R(62) = rad A(62) C Ty C T, thus we may look at the factor module
T>/R(62) and the exact sequence

0 — 62 — Th/R(62) — A(43) — 0

(with 62 = T1/R(62)). We consider the submodule N = rad A(43) of A(43), with
factor module A(43)/N = 43. We have Ext!(N,62) = 0, since Ext'(S,62) = 0 for

all the composition factors S of N. This implies that there is an exact sequence
0— N®62— Ty/R(62) — 43 — 0.

Thus, there is a submodule U C T with R(62) C U such that U/R(62) is isomorphic
to N @ 62 and T»/U is isomorphic to 43. Since T'(62)/T> = A(51) is of length 2,
we see that T'(62)/U is of length 3.

Now consider the canonical map 7 : T(62) — V(62)/soc. This map vanishes
on R(62), thus induces a map n’ : T(62)/R(62) — V(62)/soc. Let us look at the
submodule U/R(62) of T'(62)/R(62). Since the socle of V(62)/soc is equal to 43,
and U/R(62) = N @ 62 has no composition factor of the form 43, we see that
U/R(62) is contained in the kernel of n’, and therefore U is contained in the kernel

of .

By definition, the kernel of the canonical map 7 : T'(62) — V(62)/soc is Q(62),
thus we have shown that U C Q(62). But T'(62)/U is of length 3 as is T(62)/Q(62),
thus U = Q(62). But this means that Q(62)/R(62) = U/R(62) = N @ 62 =
(rad A(43)) @ 62.

The dual arguments show that Q(62)/R(62) = (V(43)/soc) & 62. O

As we have mentioned, the module N = rad A(43) is a B-module, where B =
A(10,05,51). This algebra B has been discussed in section 3. The coefficient quiver
of N is
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Now, choosing a suitable basis of N, we can assume that at least 3 of the non-zero
coeflicients are equal to 1 and we look at the remaining coefficient, say that for the
arrow «. It will be a non-zero scalar ¢ in k. Recall that we have started with a
particular generator choice for the algebra B which we can change. If we replace
the element a € J by %oz, then the coefficients needed for N will all be equal to 1.

Remark. Extending the analysis of the A- and the V-filtrations of T'(43), one can
show that T'(62) is the indecomposable projective A(10,05,51,43,62)-module with
top 51 (as well as the indecomposable injective A(10,05,51,43,62)-module with
socle 51). As Doty has pointed out, the last assertion follows also from Theorem
5.1 of the DeVisscher-Donkin paper [DD] (that result is based on their Conjecture
5.2 holding, but it is proved in Section 7 of the same paper that the conjecture
holds for GL(3); hence it holds also for SL(3)).

Let us add without proof that in this way one may show that the module T'(62)

has a coefficient quiver of the form

51
[

10
|

the shaded part being the core of T'(62).

5. The module T'(43)

Lemma 2. We have top T'(43) = 10 = soc T'(43).

Proof. We use that T'(43) has A-factors A(10), A(05), A(51), A(43) in order to
show that top T'(43) = 10. Since top T'(43) is isomorphic to a submodule of the
direct sum of the tops of the A-factors, it follows that top T'(43) is multiplicity free.
Since T'(43) maps onto V(43), the only composition factor 43 cannot belong to the
top.

Actually, it is N = T'(43)/rad A(43) which maps onto V(43), and V(43) maps
onto V(05) which is serial with top 10 and socle 05; this shows that the only
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composition factor of the form 05 of N does not belong to top N. Now 05 is not
in top N and not in top rad A(43), thus not in top 7'(43). Similarly, 51 is not in
top T'(43). It follows that top T'(43) = 10.

Note that the V-factors of T'(43) are V(10), V(05), V(51), V(43). Namely,
T'(43) maps onto V(43), say with kernel N’. The number of composition factors
of N’ of the form 05,51,10 is 1,1, 3, respectively. Since N’ has a V-filtration, its
V-factors have to be V(05), V(51) and V(10), each with multiplicity one. In the
same way, as we have seen that 7'(43) has simple top 10, we now see that it also

has simple socle 10. O

Let us add also the following remark:

Remark. The module T'(43) is a faithful A-module.

Proof. First of all, we show that the modules T(05) and T'(51) are both isomorphic
to factor modules (and to submodules) of T'(43). The A-filtration of T'(43) shows
that T'(43) has a factor module with factors A(10) and A(05). Since this factor
module is indecomposable, it follows that it is 7°(05). Similarly, T'(51) is a factor
module of T'(43). (And dually, T(05) and T'(51) are also submodules of T'(43)). Of
course, also T'(10) is a factor module and a submodule of T'(43). It follows that
T(43) is faithful, since the direct sum of all tilting modules is always a faithful

module (it is a “tilting” module in the sense used in [R2]). O

6. Algebras with quiver Q(10,05,51,43)

Assume that we deal with a quasi-hereditary algebra A with quiver Q(10,05,51,43),
with ordering 10 < 05 < 43 and 10 < 51 < 43 and such that rad A(43) and
V(43)/ soc both are homogeneous B-modules of length 4.

Since we know the composition factors of all the A-modules V(\), we can use
the reciprocity law in order to see that the indecomposable projective modules have
the following A-factors (going downwards)

P(43) A(43)
P(05) A(05) | A(43)
P(51) A(51) | A(43)

P10)  A(10) | A(05) & A(51) | A(43) & A(43).

We see: Since the Loewy length of these factors of P(10) are 1,2,4, the Loewy
length of P(10) can be at most 7. Of course, the Loewy length of P(43) = A(43)
is 4 and that of P(05) and P(51) is at most 6. It follows that J = 0.

Our aim is to contruct a presentation of A by the quiver @) and suitable relations.

As we have mentioned, for any arrow « : ¢ — j in Q we choose an element in
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e;Jej \ e;J 2ej which we denote again by «, in order to obtain a surjective algebra
homomorphisms
n:kQ — A.

Since J7 = 0, we see that all paths of length 7 in the quiver are zero when

considered as elements of A.

Lemma 3. Any generator choice for A satisfies the conditions

oa,dB,fa, BB €Y,

Yy=0, A(ad’ —coff) =0, (ad/ —c186)y=0, ~ad'y=0.

for some non-zero scalars cg,c1 € k.

Proof. The algebra B considered in section 3 is the factor algebra of A modulo the
ideal generated by e43. Since we know that the paths o/, /3, f'a, B8 are zero
in B, they belong to J* (any path between vertices of the form 05 and 51 which
goes through 43 has length at least 4):

da, B, 3o, B8 € J

Since eg3Jeq3 = 0, we have
vy =0.
Also, the shape of P(43) shows that e4s3 J3eqp is one-dimensional, and that the paths

v aa’ and v/33 both are non-zero, thus they are scalar multiples of each other.

Thus, we can assume that
¥ (ad —coBB') = 0,

with some non-zero scalar ¢y. Dually, we have
(ad — 188" )y =0

with some non-zero scalar ¢;. (Later, we will use the fact that the modules
rad A(43) and V(43)/soc are isomorphic, then we can assume that ¢y = ¢;; also,
we will replace one of the arrows «a, o', 3, 3’ by a non-zero scalar multiples, in order
to change the coefficient ¢ to 1).
Since P(43) = A(43) is of Loewy length 4, we see that 4/.J® = 0, in particular
we have
Yooy =0

(and also that v'aa’a and +'aa’3 are zero.) O
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We have seen in the proof that 7/.J3 = 0, since A(43) is of Loewy length 4.
Dually, since V(43) is of Loewy length 4, we have J3y = 0.

Lemma 4. A factor algebra of the path algebra of the quiver Q(10,05,51,43) sat-
isfying the relations exhibited in Lemma 3 is generated as a k-space by the elements

Qo 10, 05, 51, 43,

Q1 o, B, v o, B9,

Q2 ad', BB, Y, oy, By, Ve, VB,

Qs ady, a, v/'B, v, By, A ad,

Qs adyy, yad, oy, o'y B, vy, BB,

@5 ad'yYa, adyy' B, o'yy'ad', By BE,

Qs aad/yyad,

thus is of dimension at most 34.

Proof. One shows inductively that the elements listed as @; generate the factor
space J¢/JL. This is obvious for i = 0, 1,2, since here we have listed all the paths
of length 7. For ¢ = 3, the missing paths of length 3 are

ada, ad'B, BB'a, BB'B, v,
as well as
BBy, BB
By assumption, the first five belong to J*, whereas the last two are equal to a
non-zero multiple of aa’y and 7' aa’, respectively.

Next, consider ¢ > 4. We have to take the paths in ();_; and multiply them from
the right by the arrows and see what happens. For ¢ = 4, the missing paths are
vy'BA" (it is a multiple of vy'aa’), the paths o’v4'vy and 5'vv'v (both involve v'7)
as well as the right multiples of v/aqa’ (all belong to J°).

In the same way, we deal with the cases i = 5,6,7. In particular, for ¢ = 7,
we see that J7 = J® and therefore J7 = 0. This shows that we have obtained a

generating set of the algebra as a k-space. (I

7. The algebra A = A(10, 05,51, 43)
Now, let A = A(10, 05, 51, 43).

Lemma 5. For any generator choice of elements of A, the paths listed in Lemma
4 form a basis of A.

Proof. Lemma 3 asserts that we can apply Lemma 4. On the other hand, we know
that dim A = 34, since we know the dimension of the indecomposable projective
A-modules. O
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Lemma 6. The socle of P(10) has length 2.

Proof. Since A(43) @& A(43) is a submodule of P(10), the length of the socle of
P(10) is at least 2.

According to Lemma 2, the top of T'(43) is equal to 10, thus we see that T'(43) is
a factor module of P(10), say T'(43) = P(10)/W for some submodule W of P(10).
The subcategory of modules with a A-filtration is closed under kernels of surjective
maps [R2], thus W has a A-filtration. But W has a composition factor of the form
43, and is of length 5, thus W is isomorphic to A(43) and therefore has simple
socle. Quoting again Lemma 2, we know that also T'(43) has simple socle, thus the
length of the socle of P(10) is at most 2. O

Proof of the proposition. Assume that there is given a generator choice for
A. Then o« belongs to J%, thus to egsJ%egs. The basis of A exhibited in Lemma
4 shows that egsJegs is generated by o/y+'«, thus we see that o/« has to be a
multiple of /vy’ . In the same way, we consider also the elements /3, ', 3’3

and obtain scalars cqq, Cap, Cpa, Cop (some could be zero) such that

da = cgedvY a,
O/ﬂ = Cab O/’Y’Y/ﬁa
fa = cpaffvy

B8 = cw ﬁIW’Ylﬂ'

We show that we can achieve that three of these coefficients are zero: Let

ay = o' (1—cwary)
By = B —cary)
Bo = (1—(cab—caa)r?)B,
Then
agae = /(1= ceayy ) =0,
Bra = B'(1—coayy)a=0,
and
apfo = o'(1=caa¥Y)( = (cap = Caa)¥?)B
= /(1= caary — (cab — Caa)¥?')B
o/(1—cay)f = 0

In the last calculation, we have deleted the summand in rad®, since actually v/ = 0.

This shows that replacing o/, 8, 8’ by «af, B, 3, respectively, we can assume
that all the parameters cqq, Cap, Cha are equal to zero.

Thus, we can assume that we deal with the relations:

O/Oé = 07 a/ﬁ = 0) Bla = 07 6/(1 - Cbb’Y'Yl)ﬁ = Oa
Yy=0, 9 (aa/ —coBf) =0, (ad'—ec186)y=0, 7'aa’y=0.
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Let us show that ¢, # 0. Assume, for the contrary that cp, = 0. Then the
element a’ — B0’ belongs to the socle of P(10). But of course, also the elements
ad'yy' a’ and vy aa’ belong to the socle of P(10), thus the socle of P(10) is of
length at least 3. But this contradicts Lemma 6.

We have mentioned already, that the isomorphy of rad A(43) and V(43)/soc
implies that ¢y = ¢;. Thus we deal with a set of relations

O/O[ = 07 O/ﬁ = 05 ﬂ/Oé = Oa ﬂ/(l - C,’Y’-}/)ﬂ = Oa
V=0, (e —cff) =0, (aa’=cfF)y=0, 7'ad’y=0.
with two non-zero scalars c¢,c¢’. It remains a last change of the generator choice:

Replace say v by %7 and a by %a. Then we obtain the wanted presentation. This
completes the proof of the Proposition. O

8. The module T'(43)

As we have mentioned, T'(43) is a factor module of P(10), namely T'(43) = P(10)/~A,

thus it has the following coefficient quiver:

with all non-zero coefficients being equal to 1.

The picture shows nicely the A-filtration of T'(43), but, of course, one also wants
to see a V-filtration. This is the reason why we have labelled the three copies of
10 in the middle (since we exhibit a coefficient quiver, these elements 107, 102, 103

are elements of a basis). Consider the subspace
V = (101,109, 103)

of T'(43) and the elements = 10; + 105 — 102 and y = 10; — 102 of V. One easily

sees the following:
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The element x lies in the kernel both of § and 7, and it is mapped under « to
the composition factor 05 lying in soce T'(43). Thus, it provides an embedding of
V(05) into T'(43)/ soc.

The element y lies in the kernel both of o and ~y, and it is mapped under 3 to
the composition factor 51 lying in socy T'(43). Thus, it provides an embedding of
V(51) into T'(43)/ soc.

The sum of the submodules A and yA is a submodule of T'(43) of length 5 with

a V-filtration with factors going down:
V(05) ® V(51) | V(10).
Finally, the factor module T'(43)/(xA 4+ yA) is obviously of the form V(43), since
its socle is 43 and its length is 5.
Remark. In terms of the basis of A presented above, we also can write:
x = ad +adyy — BF
y=oa' ~ 47
9. A further look at the module 7'(43)

In order to understand the module T'(43) better, let us concentrate on the essential

part which looks quite strange, namely the three subfactors 107, 102, 103 shaded

o/ N
05 51

below:

05 51
N
10

The three elements 101, 10, 103 are displayed in two layers, namely in the radical
layers they belong to. If we consider the position of composition factors of the
form 10 in the socle layers, we get a dual configuration, since the subspace inside
V generated by the difference 10; — 103 lies in the kernel of v and therefore belongs
to socs T'(43).
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Let us look at the the space
V =10, & 102 & 103,

in more detail, taking into account all the information stored there, namely the
endomorphism 7 = 7’ as well as the images of the maps to V' and the kernels of

the maps starting at V. One may be tempted to look at the subspaces
Im(a’), Im(8'), Ker(a), Ker(p),

however, one has to observe that the maps mentioned here are not intrinsically
given, but can be replaced by suitable others (as we have done when we were
reducing the number of parameters). For example, instead of looking at o/, we
have to take into account the whole family of maps o’ 4+ ca’y with ¢ € k. Thus, the

intrinsic subspaces to be considered are
U =Im(d) 4+ Im(e'%) = Im(a’) + Im(7),
U =Im(d)+ Im(9),
Us = Ker(a)NKery,
Uy = Ker(f8) NKer7,

as well as Ker(¥) and Im(¥). However, since we see that

Ker(ﬁ) = Us+ Uy,
Im(i) = U;NUs,
it is sufficient to consider V' with its subspaces Uy, ..., Uy.

This means that we deal with a vector space with four subspaces, thus with a

representation of

the 4-subspace quiver with dimension vector

o o o o 2 2 1 1
o 3
A direct calculation shows that we get the following representation:

kkO O0kk Us Us
Us ={(1,0,-1))

with Uy = <(1,1,_1)>

kkk

This is an indecomposable representation of the 4-subspace quiver, it belongs to
a tube of rank 2 (and is uniquely determined by its dimension vector). Note that
its endomorphism ring is a local ring of dimension 2, with radical being the maps
V/(Us + Uy) — Uy NUs; and 7 is just such a map. The lattice of subspaces of V
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generated by the subspaces Uy, Us, Us, Uy looks as follows:
\4
Uy U,
Us U,

0

Let us repeat that ¥ = vy’ maps V/(Us 4+ Uy) onto Uy N Us, thus we may indicate
the operation of v and «/ as follows:

We should stress that the last two pictures show subspace lattices (thus composition
factors are drawn as intervals between two bullets), in contrast to the pictures of
coefficient quivers, where the composition factors are depicted by their labels (such

as 10, 05, 51,...) and the lines indicate extensions of simple modules.

Note that the core of T'(43) is semisimple, namely of the form 10 ¢ 43, here 10
is just the subfactor (Us + Uy)/(Uy N Us3).

We hope that the considerations above show well the hidden symmetries of T'(43).
Finally, let us remark that the module T'(43) has a diagram D in the sense of

Alperin (but no strong diagram), namely the following:
o
VRN
o o
y y
[¢] o
N
y
o
RN
o o
N

(obtained from the coefficient quiver by deleting the by-path [3).

10. A related algebra

We have used the A-filtration of T'(43) in order to show that 7'(43) has simple socle,
and this implied that the coefficient ¢, had to be non-zero. In this way, we have
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obtained the somewhat strange relations presented in the Proposition. Let us now
consider the same quiver Q(10,05,51,43), but with the relations

da=0, oB=0 Fa=0 FB=0,
Y7 =0, (aa'=p3)=0, (ad'—=pF)y=0, ~aa'y=0.
The corresponding algebra A’ still is quasi-hereditary, and the A-modules and the
V-modules have the same shape as those for the algebra A = A(10,05,51,43).

However, now it turns out that the tilting module for 43 is of length 11, with a
A-filtration of the form

A(10) ® A(10) | A(05) & A(51) | A(43)

and a similar V-filtration.
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