ON SPLITTING PERFECT POLYNOMIALS OVER \mathbb{F}_{p^q}

Luis H. Gallardo and Olivier Rahavandrainy

Received: 10 March 2010; Revised: 29 July 2010
Communicated by Abdullah Harmancı

Abstract. We characterize some splitting perfect polynomials in $\mathbb{F}_q[x]$, where $q = p^r$ and p is a prime number.

Mathematics Subject Classification (2000): 11T55, 11T06
Keywords: Artin-Schreier extension, finite fields, splitting polynomials, perfect polynomials

1. Introduction

Let q be a power of a prime p. For a monic polynomial $A \in \mathbb{F}_q[x]$, let $\omega(A)$ be the number of distinct irreducible monic factors of A, and let $\sigma(A)$ be the sum of all monic divisors of A (included the trivial divisors 1 and A):

$$\sigma(A) = \sum_{D \text{ monic}, \ D|A} D.$$

If $\sigma(A) = A$, then we call A a perfect polynomial.

This is the appropriate analogue for polynomials of the notion of “multiperfect” numbers for two reasons: a) it is easy to see that A is perfect if and only if A divides $\sigma(A)$ and b) we are forced to consider monic polynomials only, since the sum of all divisors of a non-monic polynomial is trivially equal to 0. Canaday [2] and Beard [1] studied principally the case when $q = p$ that even now is far from being understood.

Assume now that $q \neq p$. Gallardo and Rahavandrainy [4,5] investigated the case $q = 4$ mainly considering polynomials with a small number of prime factors in order to be able to get some results. So for general $q \neq p$, it is natural to consider first the study of some class of simple polynomials. A natural choice is to consider splitting polynomials that is, polynomials with all their roots in the same field where are the coefficients. Beard [1] does that for the case $q = p$. Recently, Gallardo and Rahavandrainy [7] studied splitting perfect polynomials over quadratic extensions ($q = p^2$). On the other hand the p-th extension field of \mathbb{F}_p, that is the Artin-Schreier extension of the prime field \mathbb{F}_p has been recently [10,3,9] considered in relation to the minimal period of Bell numbers. Some arithmetic properties of the
prime number p appear there naturally. We decided then to consider the study of splitting perfect polynomials over the field \mathbb{F}_p. Lemmas 2.9, 2.10, 3.2 contain some simple arithmetic properties of the prime number p useful for our work. Of course, we just scratch the subject in this paper.

More precisely, let p be a prime number and let $q = p^p$. We denote by \mathbb{F}_q the field with q elements. It is the splitting field of the irreducible Artin-Schreier polynomial $f(x) = x^p - x - 1 \in \mathbb{F}_p[x]$.

The splitting perfect polynomials over \mathbb{F}_4 are known (see [4, Theorem 3.4]) so we shall assume in the rest of the paper that p is an odd prime.

By Lemma 2.4, a splitting perfect polynomial A can be expressed as

$$A = A_0 \cdots A_r = \prod_{j \in \mathbb{F}_p} (x - a_0 - j)^{h_{0j}} \cdots \prod_{j \in \mathbb{F}_p} (x - a_r - j)^{h_{rj}},$$

where

$$r + 1 = \frac{\omega(A)}{p} \in \mathbb{N}, \quad 0 \leq r \leq \frac{q - 1}{p},$$

$$A_i = \prod_{j \in \mathbb{F}_p} (x - a_i - j)^{h_{ij}}, \quad \gcd(A_i, A_l) = 1 \text{ if } i \neq l$$

$$a_i \in \mathbb{F}_q, \quad a_i - a_l \notin \mathbb{F}_p \text{ for } 0 \leq i \neq l \leq r.$$

By changing $A(x)$ by $A(x + a_0)$, and by Lemma 2.2, we may suppose that $a_0 = 0$.

We say that A is trivially perfect if for any $0 \leq i \leq r$, the polynomial A_i is perfect. In that case, A is perfect and for any $0 \leq i \leq r$, there exist $N_i, n_i \in \mathbb{N}$ such that:

$$h_{ij} = N_i p^{n_i} \text{ for any } j \in \mathbb{F}_p, \quad N_i | p - 1.$$

Observe (see Corollary 2.8) that there exists an infinite number of splitting trivially perfect polynomials with $\omega(A) = (r + 1)p$. There exists also an infinite number of splitting non-trivially perfect polynomials with $\omega(A) = q$ (see Theorem 3 in [1]), namely those of the form $A = \prod_{b_i \in \mathbb{F}_q} (x - b_i)^{Np^m - 1}$ where $N, m \in \mathbb{N}$ and N divides $q - 1$.

We do not know if all splitting perfect polynomials are trivially perfect. However, we are able to classify some of them in our main result below:

Theorem 1.1. Let $0 \leq r \leq \frac{q}{p} - 1$ be an integer. In the following cases, any splitting perfect polynomial, with $\omega(A) = (r + 1)p$, is trivially perfect:

i) $0 \leq r \leq p^2 - 1$ and $a_i + a_l, \quad a_i + a_l - a_k \notin \mathbb{F}_p$ for $i \neq l \neq k$.

ii) $0 \leq r \leq 5$.
After some useful technical lemmas in section 2 we prove Theorem 1.1 in section 3. The proof of part ii) requires some involved computations with non-linear systems over \(\mathbb{F}_q / \mathbb{F}_p \).

2. Preliminary

In this section, we recall some useful results for the next sections. Let \(G \) be the Galois group of the polynomial \(f(x) = x^p - x - 1 \). It is well known that \(G \) is a cyclic group of order \(p \), generated by the Frobenius morphism:

\[
\pi : \mathbb{F}_q^* \to \mathbb{F}_q^*, \quad \pi(t) = t^p.
\]

The orbit, under the action of \(G \), of an element \(\omega \in \mathbb{F}_q \) but outside \(\mathbb{F}_p \) contains exactly \(p \) elements: \(\omega, \omega^p, \ldots, \omega^{p^{p-1}} \).

In the following, we put: \(\mathbb{F}_p = \{0, 1, 2, \ldots, p-1\} \).

Lemma 2.1.

i) The polynomial \(x^l - 1 \) splits in \(\mathbb{F}_p \) if and only if \(l = Np^m \), where \(N, m \in \mathbb{N} \) and \(N \) divides \(p - 1 \).

ii) The polynomial \(x^l - 1 \) splits in \(\mathbb{F}_q \) if and only if \(l = Np^m \), where \(N, m \in \mathbb{N} \) and \(N \) divides \(q - 1 \).

In that case, if \(d = \gcd(p-1, N) \), then \(N = d + rp \) for some \(r \in \mathbb{N} \), and for some \(j_1, \ldots, j_d \in \mathbb{F}_p \), \(b_1, \ldots, b_r \in \mathbb{F}_q - \mathbb{F}_p \), one has:

\[
x^l - 1 = (x^N - 1)^{p^m} = \left(\prod_{\mu=1}^{d} (x - j_\mu) \prod_{\lambda=1}^{r} (x - b_\lambda)(x - b_\lambda^p) \cdots (x - b_\lambda^{p^{r-1}}) \right)^{p^m}.
\]

Lemma 2.2. The polynomial \(P(x) \in \mathbb{F}_q[x] \) is perfect if and only if for all \(a \in \mathbb{F}_q \), \(P(x+a) \) is perfect.

Definition 2.3. For a monic polynomial \(A \in \mathbb{F}_q[x] \), we define the integer \(\omega(A) \) as the number of distinct irreducible monic factors of \(A \).

Lemma 2.4. (see Lemma 2.5 in [5]) If \(A \) is a splitting perfect polynomial over \(\mathbb{F}_q \), then \(\omega(A) \equiv 0 \mod p \).

More precisely, if \(\omega(A) = (r+1)p \), then \(A = \prod_{j=0}^{p-1} (x - a_0 - j)^{h_{0j}} \cdots \prod_{j=0}^{p-1} (x - a_r - j)^{h_{rj}} \), where

\[
a_0, \ldots, a_r \in \mathbb{F}_q, \quad a_i - a_l \notin \mathbb{F}_p \text{ if } 0 \leq i \neq l \leq r
\]

\[
h_{ij} = N_{ij}p^{n_{ij}} - 1, N_{ij}, n_{ij} \in \mathbb{N} \text{ and } N_{ij} \text{ divides } q - 1.
\]
Remark 2.5. In the rest of paper, by Lemmata 2.4 and 2.2, a splitting perfect polynomial \(A \) such that \(\omega(A) = (r + 1)p \) will be always expressed as

\[
A = A_0 \cdots A_r = \prod_{j=0}^{p-1} (x - a_0 - j)^{h_{0j}} \cdots \prod_{j=0}^{p-1} (x - a_r - j)^{h_{rj}},
\]

where

\[
A_i = \prod_{j=0}^{p-1} (x - a_i - j)^{h_{ij}}, \quad \gcd(A_i, A_i) = 1 \text{ if } i \neq l
\]

\[
a_0 = 0, \quad a_i \in \mathbb{F}_q, \quad a_i - a_l \notin \mathbb{F}_p \text{ for } 0 \leq i \neq l \leq r,
\]

\[
h_{ij} = N_{ij}p^{n_{ij}} - 1, \quad N_{ij}, n_{ij} \in \mathbb{N}, \quad N_{ij} | q - 1.
\]

Lemma 2.6. (see Theorem 5 in [1]) The polynomial \(A_0 = \prod_{j=0}^{p-1} (x - j)^{h_{0j}} \) is perfect over \(\mathbb{F}_p \) if and only if for any \(i, j \), \(h_{0i} = h_{0j} = Np^m - 1 \), where \(N, m \in \mathbb{N} \) and \(N \) divides \(p - 1 \).

Now, we proceed to show a crucial lemma which allows us to establish Theorem 1.1.

Lemma 2.7. For \(r \in \mathbb{N}^* \), let \(A = A_0A_1 \cdots A_r = A_0B \) be a splitting perfect polynomial over \(\mathbb{F}_q \). If \(N_{0j} | p - 1 \) for any \(j \), then the polynomials \(A_0 \) and \(B \) are both perfect.

Proof. According to Notation 2.5, we have:

\[
A_0 = \prod_{j=0}^{p-1} (x - j)^{h_{0j}} \quad \text{and} \quad B = \prod_{j=0}^{p-1} \prod_{i=1}^{r} (x - a_i - j)^{h_{ij}}.
\]

For any \(j \), since \(N_{0j} | p - 1 \), none of the monomials \(x - a_i - l \) \((l \in \mathbb{F}_p, \ i \geq 1) \), divides \(\sigma((x - j)^{h_{0j}}) \). So we may put:

\[
\sigma((x - j)^{h_{0j}}) = \prod_{l=0}^{p-1} (x - l)^{\alpha_l^{0j}},
\]

\[
\sigma((x - a_1 - j)^{h_{1j}}) = \prod_{l=0}^{p-1} (x - l)^{\alpha_l^{1j0}} (x - a_1 - l)^{\alpha_l^{1j1}} \cdots (x - a_r - l)^{\alpha_l^{1jr}},
\]

\[
\vdots
\]

\[
\sigma((x - a_r - j)^{h_{rj}}) = \prod_{l=0}^{p-1} (x - l)^{\alpha_l^{rj0}} (x - a_1 - l)^{\alpha_l^{rj1}} \cdots (x - a_r - l)^{\alpha_l^{rjr}}.
\]

Hence, by considering degrees, we obtain, for any \(j \in \{0, \ldots, p - 1\} \):

\[
h_{0j} = \sum_{i=0}^{p-1} \alpha_l^{0j0}, \quad h_{ij} = \sum_{l=0}^{p-1} (\alpha_l^{ij0} + \cdots + \alpha_l^{ijr}) \text{ if } 1 \leq i \leq r.
\]
Since $\sigma(A) = A$, by comparing exponent of $x - a_i - l$ in $\sigma(A)$ and in A, we get for any i, l:

$$h_{ql} = \sum_{j=0}^{p-1} (\alpha_t^{0j0} + \alpha_t^{1j0} + \cdots + \alpha_t^{rj0}), \quad h_{dl} = \sum_{j=0}^{p-1} (\alpha_t^{ij0} + \cdots + \alpha_t^{rj0})$$

if $1 \leq i \leq r$.

We can deduce that:

$$\sum_{j=0}^{p-1} \sum_{l=0}^{p-1} \alpha_t^{0j0} = \sum_{l=0}^{p-1} h_{0j} = \sum_{j=0}^{p-1} \sum_{l=0}^{p-1} (\alpha_t^{0j0} + \cdots + \alpha_t^{rj0}),$$

$$\sum_{j=0}^{p-1} \sum_{l=0}^{p-1} (\alpha_t^{1j0} + \cdots + \alpha_t^{1jr}) = \sum_{j=0}^{p-1} h_{1j} = \sum_{l=0}^{p-1} \sum_{j=0}^{p-1} (\alpha_t^{1j1} + \cdots + \alpha_t^{rj1}),$$

$$\vdots$$

$$\sum_{j=0}^{p-1} \sum_{l=0}^{p-1} (\alpha_t^{ij0} + \cdots + \alpha_t^{rjr}) = \sum_{j=0}^{p-1} h_{rj} = \sum_{l=0}^{p-1} \sum_{j=0}^{p-1} (\alpha_t^{ijr} + \cdots + \alpha_t^{rjr})$$

Thus:

$$\sum_{j=0}^{p-1} (h_{1j} + \cdots + h_{rj}) = \sum_{j=0}^{p-1} \sum_{l=0}^{p-1} ((\alpha_t^{1j0} + \cdots + \alpha_t^{1jr}) + \cdots + (\alpha_t^{rj0} + \cdots + \alpha_t^{rjr}))$$

$$= \sum_{j=0}^{p-1} \sum_{l=0}^{p-1} ((\alpha_t^{1j1} + \cdots + \alpha_t^{rj1}) + \cdots + (\alpha_t^{1jr} + \cdots + \alpha_t^{rjr}))$$

It follows that:

$$\sum_{j=0}^{p-1} \sum_{l=0}^{p-1} (\alpha_t^{1j0} + \cdots + \alpha_t^{rjr}) = 0,$$

so that:

$$\alpha_t^{1j0} = \cdots = \alpha_t^{rjr} = 0,$$

for any j, l.

Therefore, we have $\sigma(\prod_{j=0}^{p-1} (x - j)^{h_{0j}}) = \prod_{j=0}^{p-1} (x - j)^{h_{0j}}$ and we are done. \hfill \qed

Using Lemmas 2.6 and 2.7, we immediately obtain:

Corollary 2.8. For any $r \in \mathbb{N}^*$, the splitting polynomial $A = \prod_{j=0}^{p-1} \prod_{i=0}^{r} (x - a_i - j)^{N_{ij} p^{n_{ij} - 1}}$ is perfect over \mathbb{F}_q whenever for all $0 \leq i \leq r$, $N_{ij} = N_{il}$, $n_{ij} = n_{il}$ for all $j, l \in \mathbb{F}_p$.

Lemma 2.9. If a prime number v divides $p^q - 1$ then either $(v \equiv 1 \mod p)$ or $(p \equiv 1 \mod v)$.
Lemma 2.10. For any odd integer \(t \), the integer \(1 + tp \) does not divide \(p^r - 1 \).

Proof. Put \(m = 1 + tp \) and \(f(p) = p^r - 1 \). Assume that \(m \) divides \(f(p) \). Then \(m = n_1n_2 \) where \(n_1 \) divides \(m_1 = p - 1 \) and \(n_2 \) divides \(m_2 = 1 + p + \cdots + p^{r-1} \).

It is well known and it is easy to prove that \(\gcd(m_1, m_2) = 1 \). So,

\[
(1) : \quad e = \gcd(n_1, n_2) = 1.
\]

Now, each prime factor \(v \) of \(n_2 \) divides \(m_2 \), so that \(v \equiv 1 \mod p \), by Lemma 2.9.

It follows that \(n_2 \equiv 1 \mod p \). Moreover, clearly \(m \equiv 1 \mod p \). Thus:

\[
(2) : \quad n_1 \equiv 1 \mod p.
\]

Observe that \(m_2 \) is odd and \(m \) is even, since \(p \) and \(t \) are both odd. Thus, \(n_2 \) is odd and \(n_1 \) is even since \(m = n_1n_2 \).

By (2), we may write:

\[
n_1 = 1 + sp, \quad s \geq 0.
\]

If \(s = 0 \), then \(n_1 = 1 \). This is impossible since \(n_1 \) is even. So, \(s \geq 1 \) and we get:

\[
n_1 = 1 + sp \geq 1 + p > p - 1 = m_1.
\]

This is impossible since \(n_1 \) is a positive divisor of \(m_1 \). This proves the result. \(\square \)

3. Proof of Theorem 1.1

We recall that we use Notation 2.5 for a splitting perfect polynomial.

3.1. Case (i). If \(N_{ij} \) divides \(p - 1 \) for all \(0 \leq i \leq r \) and for all \(j \in \mathbb{F}_p \), then we can apply Lemma 2.7. So, the polynomials

\[
B = \prod_{j=0}^{p-1} \prod_{i=1}^{r} (x - a_i - j)h_{ij}
\]

and

\[
A_0 = \prod_{j=0}^{p-1} (x - a_0 - j)h_{0j}
\]

are both perfect. We remark that \(\omega(B) = rp \). So the result follows by induction on \(r \).

If there exist \(1 \leq i_1 \leq r \) and \(j_1 \in \mathbb{F}_p \) such that \(N_{i_1j_1} = N \) does not divide \(p - 1 \), then there exist \(i_2 \geq 1 \) and \(j_2 \in \mathbb{F}_p \) such that the monomial \(x - a_{i_2} - j_2 \) divides \(x^N - 1 \). So, the monomial \(x - a_{i_1} - j_1 - a_{i_2} - j_2 \) divides \(\sigma((x - a_{i_1} - j_1)^{h_{i_1j_1}}) \) and thus divides \(\sigma(A) = A \). So, either \((a_{i_1} + a_{i_2} \in \mathbb{F}_p) \) or (there exists \(1 \leq u \leq r \) such that \(a_{i_1} + a_{i_2} - a_u \in \mathbb{F}_p \)). It is impossible by hypothesis.

3.2. Case (ii) with \(w(A) \leq 2p \). - Case \(w(A) = p \)

It is immediate from Lemma 2.6.

- Case \(w(A) = 2p \)

Such polynomial may be of the form:

\[
A = A_0A_1 = \prod_{j=0}^{p-1} (x - j)^{h_{0j}} \prod_{j=0}^{p-1} (x - a_1 - j)^{h_{1j}}.
\]
We have two cases:

Case 1: If either (for all \(j\), \(N_{0j}|p - 1\)) or (for all \(j\), \(N_{1j}|p - 1\)), then by Lemma 2.7, \(A_0\) and \(A_1\) are both perfect, with \(\omega(A_0) = \omega(A_1) = p\). The result follows from previous case.

Case 2: If there exist \(j, l \in \mathbb{F}_p\) such that \(N_{0j}\) and \(N_{1l}\) do not divide \(p - 1\) then, we have:

\[
1 + \cdots + (x - j)^{N_{0j}} = \frac{1}{x - j - 1} \left((x - j)^{N_{0j}} - 1 \right)^{p^{N_{0j}}},
\]

\[
1 + \cdots + (x - a_1 - l)^{N_{1l}} = \frac{1}{x - a_1 - l - 1} \left((x - a_1 - l)^{N_{1l}} - 1 \right)^{p^{N_{1l}}}.
\]

Put:

\[d_j = \gcd(N_{0j}, p - 1), \quad d_l = \gcd(N_{1l}, p - 1), \quad \gamma_0, \gamma_1 \notin \mathbb{F}_p, \quad \gamma_{N_{0j}} = 1, \quad \gamma_{N_{1l}} = 1.
\]

Then, the orbit of \(\gamma_0\) contains exactly \(p\) elements and we have: \(N_{0j} = d_j + p\).

It follows that: \(1 \equiv p \equiv N_j \equiv 0 \mod d_j\), so \(d_j = 1\) and \(N_{0j} = 1 + p\).

Analogously, we obtain: \(N_{1l} = 1 + p\).

But, by Lemma 2.10, \(1 + p\) does not divide \(q - 1\). It is impossible.

3.3. Case \(w(A) \geq 3p\)

We need the following lemmas.

Lemma 3.1. Let \(A\) be a splitting perfect polynomial with \(\omega(A) = (r + 1)p\). If \((x - a)^{Np^m - 1}\) divides \(A\) and if \(N\) does not divide \(p - 1\), then \(N = d + \lambda p\), where \(d = \gcd(N, p - 1)\), \(\lambda \equiv 0 \mod d\) and \(1 \leq \lambda \leq r\).

Proof. If \(N = dd_1\), where \(d_1\) divides \(p^{r-1} - 1\), then, by Lemma 2.9, \(d_1\) is congruent to 1 modulo \(p\), so that \(d_1 = 1 + \mu p\). Thus, \(N = dd_1 = d + \mu dp\) has the claimed form. Put \(\lambda = \mu d\). We have:

\[d + \lambda p = \omega((x - a)^{Np^m - 1}) \leq \omega(A) = (r + 1)p, \quad \text{where} \quad d \geq 1,
\]

We conclude that: \(1 \leq \lambda \leq r\).

Lemma 3.2.

i) If \(3\) divides \(p^r - 1\) then \(p \equiv 1 \mod 3\).

ii) If \(d = \gcd(1 + 2p, p - 1)\), then \(d \in \{1, 3\}\).

iii) If \(1 + 2p\) divides \(p^r - 1\) then \(p \equiv 2 \mod 3\) and \(\gcd(1 + 2p, p - 1) = 1\).

iv) If \(1 + 4p\) divides \(p^r - 1\) then either \((p = 3)\) or \((p \equiv 1 \mod 3)\).

v) The integers \(1 + 2p\) and \(1 + 4p\) do not simultaneously divide \(p^r - 1\).

Proof.

i): by Lemma 2.9, since \(3 \not\equiv 1 \mod p\).

ii): the integer \(d\) must divide \(1 + 2p + p - 1 = 3p\) and \(d \neq p\). We get the result.

iii): If \(p \equiv 1 \mod 3\), then by ii), we have: \(\gcd(1 + 2p, p - 1) = 3\). Any prime divisor
If $r \neq 3$ of $1+2p$ divides p^p-1, so $r \equiv 1 \mod p$, since r does not divide $p-1$. Thus, we may write:

$$1+2p = 3(1+up),$$

for some integer u.

Hence: $1 \equiv 1+2p = 3(1+up) \equiv 3 \mod p$. It is impossible. We are done.

If $p = 3$, we see that $7 = 1 + 2p$ does not divide $26 = p^p - 1$.

iv): If $p \equiv 2 \mod 3$, then 3 divides $1+4p$ and p^p-1, so $p \equiv 1 \mod 3$ by i). It is impossible.

v): by iii) and iv).

The following lemma gives the possible forms of $h_{ij} = N_{ij}p^{m_{ij}} - 1$.

Lemma 3.3. Let A be a splitting perfect polynomial, with $w(A) = (r+1)p$, and $(x-a)^{N_{ij}p^{m_{ij}}-1}$ a monomial dividing A such that N does not divide $p-1$:

- if $r \in \{2,3\}$, then $N = 1 + 2p$,
- if $r \in \{4,5\}$, then either ($N \in \{1+2p,2+4p\}$) or ($N = 1 + 4p$).

Proof. If N does not divide $p-1$, then by Lemma 3.1, $N = d + \lambda p$, where $d = \gcd(N,p-1)$, $1 \leq \lambda \leq r$, $d \mid \lambda$.

If $r = 2$, then $1 \leq \lambda \leq 2$.
If $\lambda = 1$, then $N = 1 + p$ which does not divide $p^p - 1$ by Lemma 2.10.
If $\lambda = 2$, then $N \in \{1 + 2p, 2 + 2p\}$. If $N = 2 + 2p$, then $1 + p$ divides $p^p - 1$. It is impossible by Lemma 2.10.
If $r = 3$, then $1 \leq \lambda \leq 3$.
If $\lambda \leq 2$, then $N = 1 + 2p$.
If $\lambda = 3$, then $N \in \{1 + 3p, 3 + 3p\}$. Thus, either $1 + 3p$ or $1 + p$ divides $p^p - 1$. It is impossible by Lemma 2.10.
If $r = 4$, then $1 \leq \lambda \leq 4$.
If $\lambda \leq 3$, then $N = 1 + 2p$.
If $\lambda = 4$, then $N \in \{1 + 4p, 2 + 4p, 4 + 4p\}$. We can exclude the case $N = 4 + 4p$ since $1 + p$ does not divide $p^p - 1$. Furthermore, by Lemma 3.2, the integers $1 + 4p$ and $1 + 2p$ do not simultaneously divide $p^p - 1$.
If $r = 5$, then $1 \leq \lambda \leq 5$.
If $\lambda \leq 4$, then either ($N \in \{1 + 2p, 2 + 4p\}$) or ($N = 1 + 4p$).
If $\lambda = 5$, then $N \in \{1 + 5p, 5 + 5p\}$. We can exclude this case since, by Lemma 2.10, $1 + 5p$ and $1 + p$ do not divide $p^p - 1$. We are done. \square
3.3.1. Case (ii) and \(\omega(A) = 3p \). Such polynomial is of the form:

\[
A = A_0A_1A_2 = \prod_{j=0}^{p-1} (x-j)^{b_{0j}} \prod_{j=0}^{p-1} (x-a_1-j)^{b_{1j}} \prod_{j=0}^{p-1} (x-a_2-j)^{b_{2j}}.
\]

Case 1: If there exists \(i \in \{0,1,2\} \) such that for all \(j \), \(N_{ij} | p - 1 \), then we may suppose \(i = 0 \). So, by Lemma \(\ref{lem2.7} \), \(A_0 \) and \(A_1A_2 \) are both perfect. It follows by section \(\ref{sec3.2} \), that \(A_0 \) and \(B = A_1A_2 \) are both trivially perfect.

Case 2: If there exist \(j_0, j_1, j_2 \in \mathbb{F}_p \) such that \(N_{0j_0}, N_{1j_1}, N_{2j_2} \) do not divide \(p - 1 \) then, by Lemma \(\ref{lem3.3} \), we must have: \(N_{0j_0} = N_{1j_1} = N_{2j_2} = 1 + 2p = N \). Since the only monomials which interfere are: \(x - j, x - a_1 - j \) and \(x - a_2 - j \), for \(j \in \mathbb{F}_p \), we can write:

\[
x^N - 1 = (x-1) \prod_{j=0}^{p-1} (x-a_1 - j)(x-a_2 - j).
\]

Thus, for some \(l \in \mathbb{F}_p \), the monomials \(x - 2a_1 - j - l \), \(x - a_1 - a_2 - j - l \) must divide \(\sigma(A) = A \), since they divide \(\sigma((x-a_1-l)^{h_{1j}}) \). Analogously, for some \(s \in \mathbb{F}_p \), the monomials \(x - 2a_2 - j - s \), \(x - a_1 - a_2 - j - s \) must divide \(A \). So, we must have: \(2a_1 - a_2, 2a_2 - a_1, a_1 + a_2 \in \mathbb{F}_p \). It follows that \(3a_1, 3a_2 \in \mathbb{F}_p \). So, \(p = 3 \). But, in this case \(N = 1 + 2p = 7 \) does not divide \(26 = p^3 - 1 \). We are done.

3.3.2. Convention. We consider the quotient space \(\mathbb{F}_q/\mathbb{F}_p \). For \(b_1, \ldots, b_m \in \mathbb{F}_q/\mathbb{F}_p \), we write: \(b_1 \cdots b_m = 0 \) to mean that at least one of the \(b_j \)'s equals 0. Furthermore, we denote in the same manner an element \(a \) of \(\mathbb{F}_q \) and its class \(\bar{a} \) modulo \(\mathbb{F}_p \).

3.3.3. Case (ii) and \(\omega(A) = 4p \). Such polynomial is of the form: \(A = A_0A_1A_2A_3 = A_0B \).

Case 1: If there exists \(i \) (say \(i = 0 \)) such that for all \(j \), \(N_{0j} | p - 1 \), then, by Lemma \(\ref{lem2.7} \), \(A_0 \) and \(B \) are both perfect, and by Sections \(\ref{sec3.2} \) and \(\ref{sec3.3.1} \), they are both trivially perfect.

Case 2: If there exist \(j_0, \ldots, j_3 \in \mathbb{F}_p \) such that \(N_{0j_0}, \ldots, N_{3j_3} \) do not divide \(p - 1 \). Thus, by Lemma \(\ref{lem3.3} \), we must have: \(N_{0j_0} = \cdots = N_{3j_3} = 1 + 2p = N \).

Therefore, there exist \(a, b \in \{a_1, a_2, a_3\} \) and \(j_a, j_b \in \mathbb{F}_p \), such that \(a \neq b \) and the monomials \(x - a - j_a \) and \(x - b - j_b \) divide \(x^N - 1 \).

So, for \(1 \leq i \leq 3 \), the monomials \(x - a_i - j_i - a - j_a \) and \(x - a_i - j_i - b - j_b \) divide \(\sigma((x-a_i-j_i)^{h_{ij_i}}) \) and hence divide \(A \).

Therefore, \(a_i + a, a_i + b, a_i + a - a_{r_i}, a_i + b - a_{s_i} \in \mathbb{F}_p \), for some \(r_i, s_i \in \{1, 2, 3\} \).
We may suppose \(a = a_1, b = a_2 \), so the following conditions must be satisfied:

\[
\begin{align*}
(2a_1 - a_2 \in \mathbb{F}_p) & \text{ or } (2a_1 - a_3 \in \mathbb{F}_p) \\
(2a_2 - a_1 \in \mathbb{F}_p) & \text{ or } (2a_2 - a_3 \in \mathbb{F}_p) \\
(a_1 + a_2 \in \mathbb{F}_p) & \text{ or } (a_1 + a_2 - a_3 \in \mathbb{F}_p) \\
(a_1 + a_3 \in \mathbb{F}_p) & \text{ or } (a_1 + a_3 - a_2 \in \mathbb{F}_p) \\
(a_2 + a_3 \in \mathbb{F}_p) & \text{ or } (a_2 + a_3 - a_1 \in \mathbb{F}_p).
\end{align*}
\]

By Convention 3.3.2, we obtain the following system of equations with unknowns \(a_1, a_2, a_3 \in \mathbb{F}_{q^2}/\mathbb{F}_p \), \(a_1 \neq a_2 \neq a_3 \):

\[
\begin{align*}
(\circ) : \\
(2a_1 - a_2)(2a_1 - a_3) &= 0 \\
(2a_2 - a_1)(2a_2 - a_3) &= 0 \\
(a_1 + a_2)(a_1 + a_2 - a_3) &= 0 \\
(a_1 + a_3)(a_1 + a_3 - a_2) &= 0 \\
(a_2 + a_3)(a_2 + a_3 - a_1) &= 0,
\end{align*}
\]

which is impossible by Lemma 3.4. We are done.

Lemma 3.4. System \((\circ)\) has no distinct solutions in \(\mathbb{F}_{q^2}/\mathbb{F}_p \).

Proof. : If \(a_1, a_2, a_3 \in \mathbb{F}_{q^2}/\mathbb{F}_p \) satisfy this system, then any possible case leads to contradiction:

Case 2a_1 - a_2 = 0

if \(2a_2 - a_1 = 0 \) then we have: \(3(a_1 - a_2) = 0 \in \mathbb{F}_p \), so \(p = 3 \). Thus, \(N = 1 + 2p = 7 \) does not divide \(26 = p^p - 1 \). It is impossible.

if \(2a_2 - a_3 = 0 \) then \(2a_1 + a_2 - a_3 = 0 \). Thus \(a_1 + a_2 \neq 0 \), since \(a_1 - a_3 \neq 0 \). So we must have \(a_1 + a_2 - a_3 = 0 \). Therefore, \(a_1 = (2a_1 + a_2 - a_3) - (a_1 + a_2 - a_3) = 0 \). It is impossible.

Case 2a_1 - a_3 = 0

if \(2a_2 - a_1 = 0 \) then \(a_1 + 2a_2 - a_3 = 0 \). Thus \(a_1 + a_2 \neq 0 \), since \(a_2 - a_3 \neq 0 \). So we must have \(a_1 + a_2 - a_3 = 0 \). Therefore, \(a_2 = (2a_2 + a_1 - a_3) - (a_1 + a_2 - a_3) = 0 \). It is impossible.

if \(2a_2 - a_3 = 0 \) then \(2(a_1 - a_2) = 0 \). It is impossible. \(\square \)
3.3.4. Case (ii) and \(w(A) = 5p \). Case 1: If there exists \(i \) (say \(i = 0 \)) such that for all \(j, N_{0j} | p - 1 \), then, by Lemma 2.7, \(A_0 \) and \(B = A_1 \cdots A_4 \) are both perfect and thus trivially perfect.

Case 2: If there exist \(j_0, \ldots, j_4 \in \mathbb{F}_p \) such that \(N_{0j_0}, \ldots, N_{4j_4} \) do not divide \(p - 1 \).

Thus, by Lemma 3.3, we must have: either \((N_{0j_0} = \cdots = N_{4j_4} = 1 + 4p) \) or \((N_{0j_0}, \ldots, N_{4j_4} \in \{1 + 2p, 2 + 4p\}) \).

Case 21:

If \(N_{0j_0} = \cdots = N_{4j_4} = 1 + 4p = N \), then there exist \(l_1, \ldots, l_4 \in \mathbb{F}_p \) such that the four monomials \(x - a_i - l_i, 1 \leq i \leq 4 \), divide \(x^N - 1 \).

Moreover, \(p \neq 5 \) since \(1 + 4p \) must divide \(p^9 - 1 \).

As in the proof in Section 3.3.3, for all \(i \in \{1, \ldots, 4\} \), there exist \(l_i, k_i, t_i \in \{1, \ldots, 4\} \) such that:

\[
\begin{align*}
(2a_i - a_{l_i} &\in \mathbb{F}_p) \\
(a_i + a_{k_i} &\in \mathbb{F}_p) \text{ or } (a_i + a_{t_i} - a_{l_i} \in \mathbb{F}_p).
\end{align*}
\]

We observe that \(a_1, \ldots, a_4 \) play symmetric roles, and we use Convention 3.3.2, so we can reduce to the following system of equations:

\[
(*) : \begin{cases}
2a_1 - a_2 = 0 \\
(2a_2 - a_1)(2a_2 - a_3) = 0 \\
(2a_3 - a_1)(2a_3 - a_2)(2a_3 - a_4) = 0 \\
(2a_4 - a_1)(2a_4 - a_2)(2a_4 - a_3) = 0 \\
(a_1 + a_2)(a_1 + a_2 - a_3)(a_1 + a_2 - a_4) = 0 \\
(a_1 + a_3)(a_1 + a_3 - a_2)(a_1 + a_3 - a_4) = 0 \\
(a_1 + a_4)(a_1 + a_4 - a_2)(a_1 + a_4 - a_3) = 0 \\
(a_2 + a_3)(a_2 + a_3 - a_1)(a_2 + a_3 - a_4) = 0 \\
(a_2 + a_4)(a_2 + a_4 - a_1)(a_2 + a_4 - a_3) = 0 \\
(a_3 + a_4)(a_3 + a_4 - a_1)(a_3 + a_4 - a_2) = 0,
\end{cases}
\]

which is impossible by Lemma 3.5.

Case 22:

If \(N_{0j_0}, \ldots, N_{4j_4} \in \{1 + 2p, 2 + 4p\} = \{N, 2N\} \), then there exist \(a, b \in \{a_1, a_2, a_3, a_4\} \) and \(j_a, j_b \in \mathbb{F}_p \), such that the monomials \(x - a - j_a \) and \(x - b - j_b \) divide \(x^N - 1 \).

So, for \(1 \leq i \leq 4 \), the monomials \(x - a_i - j_i - a - j_a \) and \(x - a_i - j_i - b - j_b \) divide \(\sigma((x - a_i - j_i)^{b_{ji}}) \) and \(A \).
As in the proof of Proposition 3.3.3, we may suppose \(a = a_1, b = a_2 \). Moreover, \(a_1 \) and \(a_2 \) (resp. \(a_3 \) and \(a_4 \)) play symmetric roles. So, the following conditions must be satisfied:

\[
\begin{align*}
(\ast) : \quad &
\begin{cases}
(2a_1 - a_2)(2a_1 - a_3) = 0 \\
(2a_2 - a_1)(2a_2 - a_3)(2a_2 - a_4) = 0 \\
(a_1 + a_2)(a_1 + a_2 - a_3)(a_1 + a_2 - a_4) = 0 \\
(a_1 + a_3)(a_1 + a_3 - a_2)(a_1 + a_3 - a_4) = 0 \\
(a_1 + a_4)(a_1 + a_4 - a_2)(a_1 + a_4 - a_3) = 0 \\
(a_2 + a_3)(a_2 + a_3 - a_1)(a_2 + a_3 - a_4) = 0 \\
(a_2 + a_4)(a_2 + a_4 - a_1)(a_2 + a_4 - a_3) = 0.
\end{cases}
\end{align*}
\]

Lemma 3.6 implies that \(p = 5 \). Hence, we have modulo \(\mathbb{F}_p \):

either \((a_2 = 2a_1, a_3 = -a_1, a_4 = -2a_1)\) or \((a_2 = -a_1, a_3 = 2a_1, a_4 = -2a_1)\).

If \(N = 1 + 2p = 11 \), then:

\[
x^N - 1 = (x - 1) \prod_{j=0}^{p-1} (x - a_1 - j)(x - a_2 - j), \text{ where } a_2 = 2a_1 \text{ or } a_2 = -a_1.
\]

Put: \(\Lambda_1 = \{ b \in \mathbb{F}_q^* / \mathbb{F}_p^* : (x + b) \text{ divides } x^{11} - 1 \} \).

For all \(b, c \in \Lambda_1 \), we see that either \((b + 2c \in \mathbb{F}_p)\) or \((b + c \in \mathbb{F}_p)\).

By computations, if \(\alpha \in \mathbb{F}_q^* \) such that \(\alpha^p - \alpha - 1 = 0 \), then \(b_1 = \alpha^4 + 3\alpha^3 + 2\alpha^2 + 2\alpha + 4 \) and \(c_1 = 3\alpha^4 + 4\alpha^3 + 3\alpha^2 + 3\alpha + 2 \) belong to \(\Lambda_1 \), but \(b_1 + 2c_1, b_1 + c_1 \not\in \mathbb{F}_p \). It is impossible.

If \(N = 2 + 4p = 22 \), then:

\[
x^N - 1 = (x - 1)(x + 1) \prod_{j=0}^{p-1} (x - a_1 - j)(x + a_1 - j)(x - 2a_1 - j)(x + 2a_1 - j).
\]

Put: \(\Lambda_2 = \{ b \in \mathbb{F}_q^* / \mathbb{F}_p^* : (x + b) \text{ divides } x^{22} - 1 \} \).

We see that, for all \(b, c \in \Lambda_2 \), one of the following conditions must hold: \(b + c \in \mathbb{F}_p \), \(b + 2c \in \mathbb{F}_p \), \(b - 2c \in \mathbb{F}_p \).

But the elements \(b_1 \) and \(c_1 \) defined above do not satisfy that condition.

We are done.

Lemma 3.5. The system of equations (*) has no distinct solutions in \(\mathbb{F}_q^* / \mathbb{F}_p^* \).

Proof. First of all, recall that in this lemma, \(p \neq 5 \). We may consider only the following cases:

(i): \(2a_1 - a_2 = 0, \ 2a_2 - a_1 = 0, \)
(ii): $2a_1 - a_2 = 0$, $2a_2 - a_3 = 0$.

Case (i):
In that case, we have: $3(a_1 - a_2) = 0$, so $p = 3$. Moreover, $a_1 + a_2 = 0$.
Thus, $a_1 + a_3, a_1 + a_4, a_2 + a_3, a_2 + a_4 \neq 0$.
We have: $a_1 + a_3 - a_2 \neq 0$, since $(a_1 + a_3 - a_2) + (a_1 + a_2) = 2a_1 + a_3 = a_3 \neq a_1$.
So, $a_1 + a_3 - a_4 = 0$.
Therefore:
- if $a_1 + a_4 - a_2 = 0$, then $2a_1 + 2a_2 + a_3 = 0$, so $a_3 = 0$. It is impossible.
- if $a_1 + a_4 - a_3 = 0$, then $2a_1 = 0$. It is impossible.

Case (ii):
We have: $a_1 + a_2 - 3a_4 = 0$.
If $p = 3$, then $a_1 + a_2 = 0$, and $a_2 + a_3 = 0$. It is impossible since $a_1 - a_3 \neq 0$.
Thus, $p \neq 3$, and $a_1 + a_2, a_2 + a_3 \neq 0$.
Since, $a_1 + a_2 - a_3 = a_1 - a_2 \neq 0$, we have: $a_1 + a_2 - a_4 = 0$. So $a_4 - 3a_1 = 0$ and $a_2 + a_4 = 5a_1 \neq 0$. Therefore, we have either $(a_2 + a_4 - a_1 = 0)$ or $(a_2 + a_4 - a_3 = 0)$.
It follows that: $a_1 = 0$, which is impossible. \[\square\]

Lemma 3.6. If $p \neq 5$, then the system of equations (**) has no distinct solutions in $\mathbb{F}_q/\mathbb{F}_p$.

Proof. We may consider only the following cases:
(i): $2a_1 - a_2 = 0$, $2a_2 - a_3 = 0$,
(ii): $2a_1 - a_2 = 0$, $2a_2 - a_3 = 0$,
(iii): $2a_1 - a_3 = 0$, $2a_2 - a_1 = 0$,
(iv): $2a_1 - a_3 = 0$, $2a_2 - a_3 = 0$,
(v): $2a_1 - a_3 = 0$, $2a_2 - a_4 = 0$.

Case (i):
In that case, we have: $3(a_1 - a_2) = 0$, so $p = 3$. Thus, $N = 1 + 2p = 7$ does not divide $26 = p^p - 1$. It contradicts the fact: N divides $q - 1 = p^p - 1$.

Case (ii):
According to the proof of Lemma 3.4, we must have: $a_1 + a_2 - a_4 = 0$, in particular,
$a_1 + a_2 \neq 0$. We obtain the following equalities:

\[
\begin{align*}
2a_1 - a_2 &= 0, 2a_2 - a_3 = 0, a_1 + a_2 - a_4 = 0, a_1 + a_4 - a_3 = 0, \\
a_2 + a_3 - a_1 &= 0, a_2 + a_4 = 0, a_1 + a_3 = 0.
\end{align*}
\]

Thus, $a_3 = 2a_2 = 4a_1, a_3 = a_1 - a_2 = -a_1$. So, $5a_1 = 0$. It is impossible since $p \neq 5$.

Case (iii): It is similar to the previous case (ii), since a_1 and a_2 play symmetric roles.

Case (iv): We have: $2(a_1 - a_2) = 0$. It is impossible.

Case (v): We have: $a_1 + a_2 - a_3, a_1 + a_2 - a_4 \neq 0$, since $a_1 - a_2 \neq 0$. So, $a_1 + a_2 = 0$.

Therefore, $a_3 + a_4 = 2(a_1 + a_2) = 0$, and $a_1 + a_3, a_1 + a_4, a_2 + a_3, a_2 + a_4 \neq 0$.

There are two possibilities:

- $a_1 + a_3 - a_2 = 0$. It implies: $2a_1 + a_3 = a_1 + a_2 + a_1 + a_3 - a_2 = 0$ and thus $4a_1 = 2a_1 - a_3 + 2a_1 + a_3 = 0$. It is impossible.

- $a_1 + a_3 - a_4 = 0$. It implies: $a_1 + 2a_3 = (a_1 + a_3 - a_4) + (a_3 + a_4) = 0$ and thus $5a_1 = 2(2a_1 - a_3) + a_1 + 2a_3 = 0$. It is possible only if $p = 5$.

\[\square\]

3.3.5. Case (ii) and $w(A) = 6p$. Case 1: If there exists i such that for all $j, N_{ij} \mid p - 1$, then, as in the proof in Section 3.3.4, we conclude that A is trivially perfect.

Case 2: If there exist $j_0, \ldots, j_5 \in \mathbb{F}_p$ such that $N_{0j_0}, \ldots, N_{5j_5}$ do not divide $p - 1$. Thus, by Lemma 3.3, we must have: either $(N_{0j_0} = \cdots = N_{5j_5} = 1 + 4p)$ or $(N_{0j_0}, \ldots, N_{5j_5} \in \{1 + 2p, 2 + 4p\})$.

Case 21: $N_{0j_0} = \cdots = N_{5j_5} = 1 + 4p = N$:

In this case, $p \neq 5$ and there exist $l_1, \ldots, l_5 \in \mathbb{F}_p$ such that the five monomials $x - a_i - l_i, 1 \leq i \leq 5$, divide $x^N - 1$. So, as in the proof in Section 3.3.3, for all $i \in \{1, \ldots, 5\}$, there exist $l_i, k_i, t_i \in \{1, \ldots, 5\}$ such that:

\[
\begin{cases}
(2a_i - a_i, \in \mathbb{F}_p) \\
(a_i + a_k, \in \mathbb{F}_p) \text{ or } (a_i + a_k - a_{t_i}, \in \mathbb{F}_p).
\end{cases}
\]
Since a_1, \ldots, a_5 play symmetric roles, we can reduce, as in the proof in Section 3.3.4, to the following system of equations:

\[
\begin{align*}
2a_1 - a_2 &= 0 \\
(2a_2 - a_1)(2a_2 - a_3) &= 0 \\
(2a_3 - a_1)(2a_3 - a_2)(2a_3 - a_4)(2a_3 - a_5) &= 0 \\
(2a_4 - a_1)(2a_4 - a_2)(2a_4 - a_3) &= 0 \\
(2a_5 - a_1)(2a_5 - a_2)(2a_5 - a_4) &= 0 \\
(a_1 + a_2)(a_1 + a_2 - a_3)(a_1 + a_2 - a_4)(a_1 + a_2 - a_5) &= 0 \\
(a_1 + a_3)(a_1 + a_3 - a_2)(a_1 + a_3 - a_4)(a_1 + a_3 - a_5) &= 0 \\
(a_2 + a_3)(a_2 + a_3 - a_1)(a_2 + a_3 - a_4)(a_2 + a_3 - a_5) &= 0 \\
(a_2 + a_4)(a_2 + a_4 - a_1)(a_2 + a_4 - a_3)(a_2 + a_4 - a_5) &= 0 \\
(a_2 + a_5)(a_2 + a_5 - a_1)(a_2 + a_5 - a_3)(a_2 + a_5 - a_4) &= 0 \\
(a_3 + a_4)(a_3 + a_4 - a_2)(a_3 + a_4 - a_1) &= 0 \\
(a_3 + a_5)(a_3 + a_5 - a_2)(a_3 + a_5 - a_1) &= 0 \\
(a_4 + a_5)(a_4 + a_5 - a_2)(a_4 + a_5 - a_1) &= 0,
\end{align*}
\]

which is impossible by Lemma 3.7.

Case 22:
If $N_{j_0}, \ldots, N_{j_5} \in \{1 + 2p, 2 + 4p\} = \{N, 2N\}$, then there exist $a, b \in \{a_1, \ldots, a_5\}$ and $j_a, j_b \in \mathbb{F}_p$, such that the monomials $x - a - j_a$ and $x - b - j_b$ divide $x^N - 1$. So, for $1 \leq i \leq 4$, the monomials $x - a_i - j_i - a - j_a$ and $x - a_i - j_i - b - j_b$ divide $\sigma((x - a_i - j_i)h_{a,i})$ and A.

As in the proof in Section 3.3.4, we may suppose $a = a_1, b = a_2$. Moreover, a_1 and a_2 (resp. a_3, a_4 and a_5) play symmetric roles. So the following conditions must be satisfied:

\[
\begin{align*}
(2a_1 - a_2)(2a_1 - a_3) &= 0 \\
(2a_2 - a_1)(2a_2 - a_3)(2a_2 - a_4) &= 0 \\
(a_1 + a_2)(a_1 + a_2 - a_3)(a_1 + a_2 - a_4)(a_1 + a_2 - a_5) &= 0 \\
(a_1 + a_3)(a_1 + a_3 - a_2)(a_1 + a_3 - a_4)(a_1 + a_3 - a_5) &= 0 \\
(a_2 + a_3)(a_2 + a_3 - a_1)(a_2 + a_3 - a_4)(a_2 + a_3 - a_5) &= 0 \\
(a_2 + a_4)(a_2 + a_4 - a_1)(a_2 + a_4 - a_3)(a_2 + a_4 - a_5) &= 0 \\
(a_2 + a_5)(a_2 + a_5 - a_1)(a_2 + a_5 - a_3)(a_2 + a_5 - a_4) &= 0 \\
(a_3 + a_4)(a_3 + a_4 - a_2)(a_3 + a_4 - a_1) &= 0 \\
(a_3 + a_5)(a_3 + a_5 - a_2)(a_3 + a_5 - a_1) &= 0 \\
(a_4 + a_5)(a_4 + a_5 - a_2)(a_4 + a_5 - a_1) &= 0,
\end{align*}
\]

Lemma 3.8 implies that $p = 5$. We get:

either $(a_2 = 2a_1, a_3 = -a_1, a_4 = -2a_1)$ or $(a_2 = -a_1, a_3 = 2a_1, a_4 = -2a_1)$.

So the line 6 of \((\pi)\) is impossible. We are done.

Lemma 3.7. System \((\pi)\) has no distinct solutions in \(\mathbb{F}_q/\mathbb{F}_p\).

Proof. As in the proof of Lemma 3.5, we must have: \(p \neq 5\), and we may only consider the following cases:

(i): \(2a_1 - a_2 = 0, \ 2a_2 - a_1 = 0\),

(ii): \(2a_1 - a_2 = 0, \ 2a_2 - a_3 = 0\).

Case (i):
In that case, we have: \(3(a_1 - a_2) = 0\), so \(p = 3\). Moreover, \(a_1 + a_2 = 0\).
Thus, \(a_1 + a_3, a_1 + a_4, a_2 + a_3, a_2 + a_4, a_1 + a_5, a_2 + a_5 \neq 0\).
According to the proof of Lemma 3.5, case (i), we have either \((a_1 + a_3 - a_4 = 0)\)
or \((a_1 + a_3 - a_5 = 0)\). Since \(a_4\) and \(a_5\) play symmetric roles, we may only consider
the first case: \(a_1 + a_3 - a_4 = 0\).
Still by the proof of Lemma 3.5, it remains this possibility: \(a_1 + a_4 - a_5 = 0\). So,
\(a_2 + a_3 - a_5 = 0\), and \(a_3 + a_4 + a_5 = (a_1 + a_4 - a_5) + (a_2 + a_3 - a_5) = 0\). Thus,
\(a_3 + a_5 \neq 0\).
Furthermore:
\(a_3 + a_5 - a_1 \neq 0\) since \((a_3 + a_4 + a_5) - (a_3 + a_5 - a_1) = a_1 + a_4 \neq 0\),
\(a_3 + a_5 - a_2 \neq 0\) since \(a_2 + a_4 \neq 0\),
\(a_3 + a_5 - a_4 \neq 0\) since \(2a_4 = (a_3 + a_5 + a_4) - (a_3 + a_5 - a_4) \neq 0\).
We see that the line 14 of \((\pi)\) is not satisfied.

Case (ii):
According to the proof of Lemma 3.5, case (ii), we have: \(p \neq 3\), \(a_1 + a_2 \neq 0\) and
\(a_2 + a_3 \neq 0\).
Since \(a_1 + a_2 - a_3 = a_1 - a_2 \neq 0\), we have either \((a_1 + a_2 - a_4 = 0)\) or \((a_1 + a_2 - a_5 = 0)\).
It suffices to consider the first case: \(a_1 + a_2 - a_4 = 0\).
So \(a_4 - 3a_1 = 0\) and \(a_2 + a_4 \neq 0\). Therefore (see proof of Lemma 3.5, case (ii)),
we have either \((a_2 + a_4 - a_1 = 0)\) or \((a_2 + a_4 - a_3 = 0)\) or \((a_2 + a_4 - a_5 = 0)\). The condition:
\((a_2 + a_4 - a_1 = 0)\) or \((a_2 + a_4 - a_3 = 0)\) does not hold since it implies \(a_1 = 0\), which
is impossible. So \(a_2 + a_4 - a_5 = 0\). Thus: \(a_2 = 2a_1, \ a_3 = 4a_1, \ a_4 = 3a_1, \ a_5 = 5a_1\).
It follows that the line 4 of \((\pi)\) is not satisfied. It is impossible.

Lemma 3.8. If \(p \neq 5\), then System \((\overline{\pi})\) has no distinct solutions in \(\mathbb{F}_q/\mathbb{F}_p\).

Proof. We may only consider (see proof of Lemma 3.6) the following cases:

(i): \(2a_1 - a_2 = 0, \ 2a_2 - a_3 = 0\),
(ii): $2a_1 - a_3 = 0$, $2a_2 - a_4 = 0$.

Case (i): According to the proof of Lemma 3.6, case (ii), we must have: $p \neq 3$, $a_1 + a_2 \neq 0$ and $a_1 + a_2 - a_5 = 0$. So $a_5 = a_1 + a_2 = 3a_1$. We obtain: $a_3 = 2a_2 = 4a_1$. So $a_4 + a_1 = 0$ since $a_4 + a_1 - a_2 = a_4 - a_1 \neq 0$ and $a_4 + a_1 - a_3 = a_4 - a_5 \neq 0$. Thus the line 4 of $(\ast\ast)$ is not satisfied. It is impossible.

Case (ii): We have: $a_1 + a_2 - a_3$, $a_1 + a_2 - a_4 \neq 0$, since $a_1 - a_2 \neq 0$. So, either $(a_1 + a_2 = 0)$ or $(a_1 + a_2 = a_5)$.

- If $a_1 + a_2 = 0$, then according to the proof of Lemma 3.6, it just remains the case: $a_1 + a_3 = a_5$. So we obtain: $a_2 = -a_1, a_3 = 2a_1, a_4 = 2a_2 = -2a_1, a_5 = 3a_1$. Thus the line 6 of $(\ast\ast)$ is not satisfied. It is impossible.

- If $a_1 + a_2 = a_5$, then $a_3 + a_4 = 2(a_1 + a_2) = 2a_5 \neq 0$. Since $p \neq 3$, we have: $a_1 + a_3 = 3a_1 \neq 0$ and $a_1 + a_3 - a_5 = a_3 - a_2 \neq 0$. It remains two cases:
 - if $a_1 + a_3 - a_2 = 3a_1 - a_2 = 0$, then:
 \[
 \begin{cases}
 a_1 + a_4 - a_5 = a_4 - a_2 \neq 0, \\
 a_1 + a_4 - a_2 = a_4 - a_3 \neq 0, \\
 a_1 + a_4 - a_3 = a_4 - a_1 \neq 0.
 \end{cases}
 \]
 Thus, $0 = a_1 + a_4 = a_1 + 2a_2 = 7a_1$. So $p = 7$, it is impossible because $15 = 1 + 2p$ does not divide $p^p - 1 = 7^7 - 1$. Thus the line 5 of $(\ast\ast)$ is not satisfied. It is impossible.
 - if $a_1 + a_3 - a_4 = 3a_1 - a_4 = 0$, then:
 \[
 \begin{cases}
 a_1 + a_4 = 4a_1 \neq 0, \\
 2(a_1 + a_4 - a_2) = 5a_1 \neq 0, \text{ since } p \neq 5, \\
 a_1 + a_4 - a_3 = 2a_1 \neq 0, \\
 2(a_1 + a_4 - a_5) = 3a_1 \neq 0, \text{ since } p \neq 3.
 \end{cases}
 \]
 Thus the line 5 of $(\ast\ast)$ is not satisfied. It is impossible. \[\Box\]

Acknowledgment. The authors would like to thank the referee for suggestions and for careful reading of the paper.
References

Luis H. Gallardo
Department of Mathematics
University of Brest
6, Av. Le Gorgeu, C.S. 93837,
29238 Brest Cedex 3, France
e-mail: Luis.Gallardo@univ-brest.fr

Olivier Rahavandrainy
Department of Mathematics
University of Brest
6, Av. Le Gorgeu, C.S. 93837,
29238 Brest Cedex 3, France
e-mail: Olivier.Rahavandrainy@univ-brest.fr