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Abstract. Let G be a finite group and H be a subgroup of G. Then H is
said to be S-quasinormally embedded in G if for each prime p dividing the
order of H, a Sylow p-subgroup of H is also a Sylow p-subgroup of some S-
quasinormal subgroup of G. H is said to be c-c-permutable in G if for each
subgroup A of G, there exists an element g ∈ ⟨A,H⟩ such that AHg = HgA.
H is said to be an SS-quasinormal subgroup of G if there is a supplement B

of H to G such that H permutes with every Sylow subgroup of B. A subgroup
series Ω : G = G0 > G1 > · · · > Gi > · · · > Gn−1 > Gn = 1 is said to
be a maximal subgroup series of G if Gi is a maximal subgroup of Gi−1 for
each i ∈ {1, 2, . . . , n}. In this paper, we first prove that G is supersolvable
if and only if G possesses subnormal maximal series Ω such that either Gi

is S-quasinormally embedded in G, or Gi is SS-quasinormal in G for each
i ∈ {1, 2, . . . , n}. Second, we prove that if G possesses a maximal subgroup
series Ω such that either Gi is c-c-permutable in G, or Gi is SS-quasinormal
in G, then G is solvable.
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1. Introduction

Throughout this paper, all groups are finite and G always denotes a finite group.
As a fundamental embedding property in finite group theory, the normality of
subgroups has long been recognized as pivotal. This significance has spurred re-
search aimed at weakening the restrictive condition of normality while preserving
key structural features. A notable characteristic of normal subgroups lies in their
permutability with all other subgroups of the group: specifically, if N is a normal
subgroup of G, then NH = HN for every subgroup H of G. Motivated by this
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permutability property, a natural generalization emerges: a subgroup H of a group
G is said to be quasinormal (or permutable) in G if it satisfies HK = KH for all
K ≤ G (see [3]). In 1962, Kegel [8] generalized the concept of quasinormal sub-
group to the S-quasinormal subgroup (or S-permutable subgroup): a subgroup H

of G is said to be S-quasinormal in G if H is permutable with all Sylow subgroups
of G. In 1998, Ballester-Bolinches and Pedraza-Aguilera [1] extended those con-
cepts to S-quasinormally embedded subgroups. A subgroup H of G is said to be
S-quasinormally embedded in G if for each prime p dividing the order of H, a Sylow
p-subgroup of H is also a Sylow p-subgroup of some S-quasinormal subgroup of G.
In 2005, Guo, Shum and Skiba [5] introduced the concept of completely conditional
permutable (abbreviated as c-c-permutable) subgroup. A subgroup H of G is called
completely conditional permutable (abbreviated as c-c-permutable) in G if for each
subgroup A of G, there exists an element g ∈ ⟨A,H⟩ such that AHg = HgA.

In 2008, Li [10] studied another generalization of S-quasinormal subgroup in a
new way. Recall that a supplement of H to G is a subgroup B such that G = HB.
There is at least one such supplement for every subgroup, for instance, let B = G.
Based on the above concepts, Li [10] gave a new generalization of S-quasinormal
subgroup to SS-quasinormal subgroup: A subgroup H of G is said to be an SS-
quasinormal subgroup (supplement-Sylow-quasinormal subgroup) of G if there is a
supplement B of H to G such that H permutes with every Sylow subgroup of B.

On the other hand, the relationship between the properties of maximal subgroups
of a finite group G and the structure of G has been studied extensively. It is well
known that a finite group G is nilpotent if and only if every maximal subgroup of
G is normal in G. Huppert’s well known theorem shows that a finite group G is
supersolvable if and only if every maximal subgroup of G has prime index in G.
Furthermore, let

Ω : G = G0 > G1 > · · · > Gi > · · · > Gn−1 > Gn = 1

be a maximal subgroup series of G, meaning that Gi is a maximal subgroup of
Gi−1 for every i = 1, . . . , n. The structure of G can be investigated by under the
assumption that all Gi have well-behaved properties. For example, the series Ω is
said to be central in G if [G,Gi−1] ≤ Gi for every i = 1, . . . , n; and it is said to be
normal (or subnormal) in G if all Gi are normal (or subnormal) in G. The following
results are well known:

(1) G is nilpotent if and only if G possesses a maximal subgroup series that is
central in G.
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(2) G is supersolvable if and only if G possesses a maximal subgroup series that
is normal in G.

(3) G is solvable if and only if G possesses a maximal subgroup series that is
subnormal in G.

Recently, Qian and Tang [12] studied the finite groups G that admit an S-
quasinormal (c-c-permutable, resp.) maximal subgroup series, i.e., a series G =

G0 > G1 > · · · > Gi > · · · > Gn−1 > Gn = 1 where all Gi are S-permutable
(c-c-permutable, resp.) in G. They proved that G is supersolvable if and only if G
possesses an S-quasinormal (c-c-permutable, resp.) maximal subgroup series.

Meng and Lu [11] investigated finite groups G that admit an SS-quasinormal
maximal subgroup series, i.e., a series G = G0 > G1 > · · · > Gi > · · · > Gn−1 >

Gn = 1 where all Gi are SS-quasinormal in G. They showed that if G possesses
an SS-quasinormal maximal subgroup series, then G is solvable. Furthermore, G
is supersolvable if and only if G possesses an SS-quasinormal maximal subgroup
series which is subnormal in G.

In the light of the above investigations, it seems meaningful to investigate fi-
nite groups which possess an S-quasinormally embedded maximal subgroup series.
However, such groups need not be solvable, we have the following example:

Example 1.1. Let G =PSL(2, 7). Then G has a maximal subgroup of order
21, say G1. Let G2 be a subgroup of G1 of order 3. Obviously, both G1 and
G2 are Hall subgroups of G. In particular, they are S-quasinormally embedded
in G. So G possesses an S-quasinormally embedded maximal subgroup series:
G = G0 > G1 > G2 > G3 = 1. But, G is not solvable.

Inspired by Example 1.1, after checking many examples, it seems reasonable to
conjecture that if G possesses an S-quasinormally embedded maximal subgroup
series G = G0 > G1 > · · · > Gi > · · · > Gn−1 > Gn = 1 such that |Gi−1 : Gi| is a
prime for each i ∈ {1, 2, . . . , n}, then G is solvable. However, we cannot yet prove
it in this paper.

Furthermore, the following example shows that a solvable group which possesses
an S-quasinormally embedded maximal subgroup series need not be supersolvable.

Example 1.2. Let G =A4 and H be a subgroup of G of order 3. Then

Ω1 : G > H > 1

is an S-quasinormally embedded maximal subgroup series of G. However, G is not
supersolvable. On the other hand, let K be a subgroup of G of order 4 and L be
any subgroup of K of order 2. Then
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Ω2 : G > K > L > 1

is a subnormal maximal subgroup series of G. But Ω2 is not S-quasinormally
embedded in G.

Observe that every S-quasinormal subgroup of G is SS-quasinormal and S-
quasinormally embedded in G. In general, an SS-quasinormal subgroup need not be
S-quasinormally embedded. Conversely, an S-quasinormally embedded subgroup
need not be SS-quasinormal too. In fact, there is no inclusion-relationship between
the two concepts (see [9,10]). So the first aim of this paper is to investigate the
finite groups G that admit a subnormal maximal subgroup series:

G = G0 ▷G1 ▷ · · ·▷Gi ▷ · · ·▷Gn−1 ▷Gn = 1

such that either Gi is S-quasinormal embedded in G, or SS-quasinormal in G for
each i ∈ {1, . . . , n}.

Theorem 1.3. Let G be a finite group. Then G is supersolvable if and only if G
possesses a subnormal maximal subgroup series:

G = G0 ▷G1 ▷ · · ·▷Gi ▷ · · ·▷Gn−1 ▷Gn = 1

such that either Gi is S-quasinormally embedded in G, or Gi is SS-quasinormal in
G for each i ∈ {1, . . . , n}.

By Theorem 1.3, the following two corollaries are immediate.

Corollary 1.4. [11, Theorem 1.4] Let G be a finite group. Then G is supersolvable
if and only if G possesses a subnormal maximal subgroup series which is SS-
quasinormal in G.

Corollary 1.5. Let G be a finite group. Then G is supersolvable if and only if G
possesses a subnormal maximal subgroup series which is S-quasinormal embedded
in G.

Moreover, note that if G possesses a c-c-permutable (SS-quasinormal, resp.)
maximal subgroup series, then G is solvable (see [11,12]). So the second aim of this
paper is to prove the following results.

Theorem 1.6. Let G be a finite group. If G possesses a maximal subgroup series:

G = G0 > G1 > · · · > Gi · · · > Gn−1 > Gn = 1

such that either Gi is c-c-permutable in G, or Gi is SS-quasinormal in G, then G

is solvable.

Applying Theorem 1.6, we can obtain the following two corollaries.
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Corollary 1.7. [12, Theorem 1.2] If G possesses a c-c-permutable maximal sub-
groups series, then G is solvable.

Corollary 1.8. [11, Theorem 1.2] If G possesses an SS-quasinormal maximal
subgroups series, then G is solvable.

All unexplained notations and terminologies are standard and can be found in
[4,7].

2. Preliminaries

In this section, we collect some results which will be used in the proof of the
main results.

Lemma 2.1. [1, Lemma 1] Suppose that H is an S-quasinormally embedded sub-
group of G, K ≤ G and N is a normal subgroup of G. Then, we have the following:

(1) If H ≤ K, then H is an S-quasinormally embedded subgroup of K.
(2) HN/N is an S-quasinormally embedded subgroup of G/N .

Lemma 2.2. [10, Lemma 2.1] Suppose that H is an SS-quasinormal subgroup of
G, K ≤ G and N is a normal subgroup of G. Then, we have the following:

(1) If H ≤ K, then H is an SS-quasinormal subgroup of K.
(2) HN/N is an SS-quasinormal subgroup of G/N .

Lemma 2.3. [10, Lemma 2.2] Let H be a nilpotent subgroup of G. Then, the
following statements are equivalent:

(1) H is an S-quasinormal subgroup of G.
(2) H ≤ F (G) and H is an SS-quasinormal subgroup of G.

Lemma 2.4. [11, Lemma 2.3] Let M be a maximal subgroup of G. If M is SS-
quasinormal in G, then |G : M | is a prime power.

Lemma 2.5. [5, Lemma 2.1] Suppose that H is a c-c-permutable subgroup of G,
K ≤ G and N is a normal subgroup of G. Then, we have the following:

(1) If H ≤ K, then H is a c-c-permutable subgroup of K.
(2) HN/N is a c-c-permutable subgroup of G/N .

Lemma 2.6. [5, Lemma 2.4] Let A be a maximal subgroup of H where H ≤ G. If
A is c-c-permutable in G, then |H : A| is a prime.

Lemma 2.7. Let G be a finite group and N be a normal subgroup of G. Suppose
that G possesses a maximal subgroup series Ω such that each member of Ω is either
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S-quasinormally embedded in G, or SS-quasinormal in G. Then G/N also possesses
a maximal subgroup series Ω such that each member of Ω is either S-quasinormally
embedded in G, or SS-quasinormal in G.

Proof. Let G be a finite group and N be a normal subgroup of G. Suppose that

Ω : G = G0 > G1 > · · · > Gi > · · · > Gn−1 > Gn = 1

is a maximal subgroup series of G such that Gi is either S-quasinormally embedded
in G, or SS-quasinormal in G, for each i ∈ {1, 2, . . . , n}. It follows that every
GiN/N is either S-quasinormally embedded in G, or SS-quasinormal in G/N by
Lemmas 2.1(2) and 2.2(2). Write G = G/N and Gi = GiN/N . Let us investigate
the following subgroup series of G:

Ω : G = G0 ≥ · · · ≥ Gi ≥ · · · ≥ Gn = 1.

For each i = 1, . . . , n, we see that either Gi = Gi−1 or Gi is maximal in Gi−1.
Therefore, after removing the equal terms in Ω, we obtain that G possesses a
maximal subgroup series Ω which satisfies the conclusion of the Lemma. □

Lemma 2.8. Let G be a finite group and N be a normal subgroup of G. Suppose
that G possesses a maximal subgroup series Ω such that each member of Ω is either
c-c-permutable in G, or SS-quasinormal in G. Then G/N also possesses a maximal
subgroup series Ω such that each member of Ω is either c-c-permutable in G, or
SS-quasinormal in G.

Proof. By Lemmas 2.2(2) and 2.5(2), the proof is similar to Lemma 2.7, and thus
we omit it. □

Lemma 2.9. [2, Lemma 2] Let N = S1×· · ·×St be a direct product of isomorphic
non-abelian simple groups, and let M be a maximal subgroup of N with S1 ≰ M .
Then one of the following assertions holds:

(1) M = D × S2 × · · · × St, where D is maximal in S1.
(2) One of the subgroups S2, . . . , St, say S2, is not contained in M , then M =

D×S3 × · · ·×St, where D∩S1 = D∩S2 = 1 and S1
∼= S2

∼= D < S1 ×S2.

Lemma 2.10. [6, Theorem 1] Let G be a non-abelian simple group. If H is a
proper subgroup of G with index pa, where p is a prime, then one of the following
holds:

(1) G =An and H =An−1, n = pa.
(2) G =PSL(n, q) and H is the stabilizer of a line or hyperplane,

|G : H| = (qn − 1)/(q − 1) = pa and n is a prime.
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(3) G =PSL(2, 11) and H =A5.
(4) G =M23 and H =M22.
(5) G =M11 and H =M10.
(6) G =PSU(4, 2) and |G : H| = 27.

3. Proofs of the theorems

Proof of Theorem 1.3. The necessity is trivial as every supersolvable group has a
normal maximal subgroup series. So we only need to prove the sufficiency. Suppose
that the theorem is not true and let G be a counterexample of the smallest order.
Let

Ω : G = G0 ▷G1 ▷ · · ·▷Gi ▷ · · ·▷Gn−1 ▷Gn = 1

be a subnormal maximal subgroup series of G such that Gi is either S-quasinormally
embedded in G, or SS-quasinormal in G, for each i ∈ {1, 2, . . . , n}. It is obvious
that G is solvable and Gi is normal in Gi−1 with prime index. By Lemmas 2.1(1)
and 2.2(1), every member Gi of Ω satisfies the hypothesis of the theorem, so Gi is
supersolvable by choice of G for i ≥ 1.

Let N be a minimal normal subgroup of G. Then G/N satisfies the hypothesis
of the theorem by Lemma 2.7 and hence G/N is supersolvable. Consequently, if G
has two distinct minimal normal subgroups, say N1 and N2, then both G/N1 and
G/N2 are supersolvable, and so is G. It contradicts the choice of G. Therefore, G
possesses a unique minimal normal subgroup, says N . Since G is solvable, we may
assume that N is an elementary abelian p-group for some prime p. Furthermore, if
Φ(G) ̸= 1, then N ≤ Φ(G) and hence G/Φ(G) is supersolvable and so is G. This
is another contradiction. Therefore, we may assume that Φ(G) = 1. Moreover,
applying the solvability of G again, there is a maximal subgroup H of G such that
G = HN = H ⋉N , where H ∼= G/N is supersolvable. Now, it is easy to see that

N = Op(G) = F (G) = CG(N), and CH(N) = 1.

Furthermore, observe that G1 is normal in G and Gn−1 is a subnormal subgroup
of G of prime order. We have

Gn−1 ≤ N = Op(G) = F (G) < G1.

On the other hand, we have G1 = G1 ∩ G = G1 ∩ HN = (G1 ∩ H) ⋉ N . Set
H1 = G1∩H, then H1 is normal in H as G1 is normal in G. By the supersolvability
of G1, we have Op′,p,p′(G1) = G1. Furthermore, since Op′(G1) ≤ Op′(G) = 1, G1
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has a normal Sylow p-subgroup which is also normal in G. Consequently, N is
exactly the normal Sylow p-subgroup of G1. Hence, H1 is a p′-group.

We claim that H is a Hall p′-subgroup of G. If not, then H = P0H1, where
P0 ∈ Sylp(H) has order p. By the supersolvability of G1, we conclude that H1

∼=
G1/N = G1/CG1

(N) is an abelian group with exponent dividing p−1. In particular,
p is the largest prime divisor of |H|. Since H is also supersolvable, H has a normal
Sylow p-subgroup. This leads to Op(G) = P0N > N , a contradiction. Hence, H is
a Hall p′-subgroup of G, the claim as desired.

Finally, by the hypothesis of the theorem, we know that Gn−1 is either S-
quasinormally embedded in G, or SS-quasinormal in G. If Gn−1 is S-quasinormally
embedded in G, then there exists an S-quasinormal subgroup M of G such that
Gn−1 is a Sylow p-subgroup of M . Since H is a Hall p′-subgroup of G, we have
MH = HM and Gn−1 is also a Sylow p-subgroup MH. However, H is a maximal
subgroup of G implies that G = MH. It follows that N = Gn−1 is a subgroup
of order p. This implies that G is supersolvable, a contradiction. So we assume
that Gn−1 is SS-quasinormal in G. Applying Lemma 2.3, Gn−1 is S-quasinormal
in G. It follows that Gn−1H = HGn−1 ≤ G as H is a Hall p′-subgroup of
G. Since H is a maximal subgroup of G, we have G = HGn−1 which implies
|Gn−1| = |G : H| = |N |. Therefore, G is supersolvable. This is a final contradic-
tion. The proof of the theorem is complete. □

Proof of Theorem 1.6. Suppose that the theorem is not true and let G be a
counterexample of the smallest order. Let

Ω : G = G0 > G1 > · · · > Gi > · · · > Gn−1 > Gn = 1

be a maximal subgroup series of G such that Gi is either c-c-permutable in G, or
SS-quasinormal in G for each i ∈ {1, 2, . . . , n}.

Let N be a minimal normal subgroup of G. Then G/N satisfies the hypothesis
of the theorem by Lemma 2.8. By induction, G/N is solvable. Suppose that G

has two distinct minimal normal subgroups, say N1 and N2, then both G/N1 and
G/N2 are solvable, and so is G, a contradiction. Therefore, we may assume that G

possesses a unique minimal normal subgroup, say N . Since G is non-solvable, N is
a direct product of some isomorphic non-abelian simple groups and CG(N) = 1.

Applying Lemma 2.2(1) and Lemma 2.5(1), we know that G1 satisfies the hy-
pothesis of the theorem. It follows that G1 is solvable by induction. So N ≰ G1 and
hence G1∩N is a proper subgroup of N . Since Gi is either c-c-permutable in G, or
SS-quasinormal in G, we get Gi is either c-c-permutable in G, or SS-quasinormal
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in G by Lemma 2.2(1) and Lemma 2.5(1). Furthermore, applying Lemma 2.4 and
Lemma 2.6, we have |Gi−1 : Gi| is a prime power. Observe that |N ∩Gi−1 : N ∩Gi|
divides |Gi−1 : Gi|, we have |N ∩ Gi−1 : N ∩ Gi| is also a prime power for each
i ∈ {1, 2, . . . , n}. In particular, assume that |N : N ∩G1| = |N ∩G0 : N ∩G1| = pα

for some prime p. This shows that N possesses a solvable subgroup with index
prime power, namely N ∩ G1. By Lemma 2.9, we get that N is a non-abelian
simple group.

Let j be the largest index such that |N : N ∩Gj | is a p-power. Let B = N ∩Gj

and C = N ∩Gj+1. Then |B : C| = qβ , where q is a prime different from p.
By hypothesis of the theorem, we know that Gj+1 is either c-c-permutable in G,

or SS-quasinormal in G. If Gj+1 is c-c-permutable in G, then there exists a Sylow
p-subgroup Np of N such that Gj+1Np ≤ G. Consequently, we have

CNp = (N ∩Gj+1)Np = N ∩Gj+1Np ≤ N .

On the other hand, if Gj+1 is SS-quasinormal in G, there exists a subgroup B of G
such that G = Gj+1B and Gj+1Bp = BpGj+1, where Bp ∈ Sylp(B). This implies
that Gj+1Bp is a proper subgroup of G and |G|p = |Gj+1Bp|p. Consequently, there
exists a subgroup Gp ∈ Sylp(G) such that Gj+1Gp = GpGj+1. It follows that

C(N ∩Gp) = (N ∩Gj+1)(N ∩Gp)

= N ∩ (Gj+1(N ∩Gp))

= (Gj+1(N ∩Gp)) ∩N

= ((N ∩Gp)Gj+1) ∩N

= (N ∩Gp)C.

Set Np = N ∩ Gp, then Np ∈ Sylp(N) as N is normal in G. We also get that
CNp = NpC ≤ N . Moreover, by calculating the p′-part of |N : CNp|, we have

|N : CNp| = |N : CNp|p′ = |N : Cp′ | = |B : C| = qβ .

This implies that the non-abelian simple group N admits subgroups G1 ∩ N and
CNp such that |N : G1 ∩ N | and |N : CNp| are distinct prime powers. So N will
be isomorphic to one of the group in Lemma 2.10. Moreover, since PSL(2, 7) is
the only simple group with subgroups of two different prime powers indices (see
[6]), we have N ∼=PSL(2, 7). Finally, observe that N is the unique minimal normal
subgroup G and CG(N) = 1. Applying N/C-theorem, we get

N ≤ G = G/CG(N) ≲Aut(N).



10 FEIYU GENG AND WEI MENG

Consequently, since Aut(PSL(2, 7)) ∼=PSL(2, 7).Z2, we have

PSL(2, 7) ∼= N ≤ G ≲Aut(PSL(2, 7)) ∼=PSL(2, 7).Z2.

So G = N ∼=PSL(2, 7) or G ∼=PSL(2, 7).Z2. By checking the maximal subgroup
series of G, we can conclude that G does not satisfy the hypothesis of the theorem.
This is a final contradiction. The proof of the theorem is complete. □
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