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ABSTRACT. Let G be a finite group and H be a subgroup of G. Then H is
said to be S-quasinormally embedded in G if for each prime p dividing the
order of H, a Sylow p-subgroup of H is also a Sylow p-subgroup of some S-
quasinormal subgroup of G. H is said to be c-c-permutable in G if for each
subgroup A of G, there exists an element g € (A, H) such that AH9 = HIA.
H is said to be an SS-quasinormal subgroup of G if there is a supplement B
of H to G such that H permutes with every Sylow subgroup of B. A subgroup
series 2 : G =Go > G > - > G > -+ > Gpo1 > Gy = 1 is said to
be a maximal subgroup series of G if G; is a maximal subgroup of G;_1 for
each ¢ € {1,2,...,n}. In this paper, we first prove that G is supersolvable
if and only if G possesses subnormal maximal series 2 such that either G;
is S-quasinormally embedded in G, or G; is SS-quasinormal in G for each
i € {1,2,...,n}. Second, we prove that if G possesses a maximal subgroup
series 2 such that either G; is c-c-permutable in G, or G; is SS-quasinormal

in G, then G is solvable.
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1. Introduction

Throughout this paper, all groups are finite and G always denotes a finite group.
As a fundamental embedding property in finite group theory, the normality of
subgroups has long been recognized as pivotal. This significance has spurred re-
search aimed at weakening the restrictive condition of normality while preserving
key structural features. A notable characteristic of normal subgroups lies in their
permutability with all other subgroups of the group: specifically, if N is a normal
subgroup of G, then NH = HN for every subgroup H of G. Motivated by this

W. Meng is supported by National Natural Science Foundation of China (12161021), Guangxi
Natural Science Foundation Program (2025JJA110017) and Guangxi Colleges and Universities
Key Laboratory of Data Analysis and Computation.



2 FEIYU GENG AND WEI MENG

permutability property, a natural generalization emerges: a subgroup H of a group
G is said to be quasinormal (or permutable) in G if it satisfies HK = KH for all
K < G (see [3]). In 1962, Kegel [8] generalized the concept of quasinormal sub-
group to the S-quasinormal subgroup (or S-permutable subgroup): a subgroup H
of G is said to be S-quasinormal in G if H is permutable with all Sylow subgroups
of G. In 1998, Ballester-Bolinches and Pedraza-Aguilera [1] extended those con-
cepts to S-quasinormally embedded subgroups. A subgroup H of G is said to be
S-quasinormally embedded in G if for each prime p dividing the order of H, a Sylow
p-subgroup of H is also a Sylow p-subgroup of some S-quasinormal subgroup of G.
In 2005, Guo, Shum and Skiba [5] introduced the concept of completely conditional
permutable (abbreviated as c-c-permutable) subgroup. A subgroup H of G is called
completely conditional permutable (abbreviated as c-c-permutable) in G if for each
subgroup A of G, there exists an element g € (A, H) such that AHY = HIA.

In 2008, Li [10] studied another generalization of S-quasinormal subgroup in a
new way. Recall that a supplement of H to G is a subgroup B such that G = HB.
There is at least one such supplement for every subgroup, for instance, let B = G.
Based on the above concepts, Li [10] gave a new generalization of S-quasinormal
subgroup to SS-quasinormal subgroup: A subgroup H of G is said to be an SS-
quasinormal subgroup (supplement-Sylow-quasinormal subgroup) of G if there is a
supplement B of H to G such that H permutes with every Sylow subgroup of B.

On the other hand, the relationship between the properties of maximal subgroups
of a finite group G and the structure of G has been studied extensively. It is well
known that a finite group G is nilpotent if and only if every maximal subgroup of
G is normal in G. Huppert’s well known theorem shows that a finite group G is
supersolvable if and only if every maximal subgroup of G has prime index in G.

Furthermore, let
V. G=Gy>G1> >G> ->Gp_1>G, =1

be a maximal subgroup series of G, meaning that G; is a maximal subgroup of
Gi_1 for every ¢ = 1,...,n. The structure of G can be investigated by under the
assumption that all G; have well-behaved properties. For example, the series € is
said to be central in G if [G,G,;-1] < G; for every i = 1,...,n; and it is said to be
normal (or subnormal) in G if all G; are normal (or subnormal) in G. The following
results are well known:

(1) G is nilpotent if and only if G possesses a maximal subgroup series that is

central in G.
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(2) G is supersolvable if and only if G possesses a maximal subgroup series that
is normal in G.

(3) G is solvable if and only if G possesses a maximal subgroup series that is
subnormal in G.

Recently, Qian and Tang [12] studied the finite groups G that admit an S-
quasinormal (c-c-permutable, resp.) maximal subgroup series, i.e., a series G =
Go>Gy >-->G; > >Gu_1 > G, =1 where all G; are S-permutable
(c-c-permutable, resp.) in G. They proved that G is supersolvable if and only if G
possesses an S-quasinormal (c-c-permutable, resp.) maximal subgroup series.

Meng and Lu [11] investigated finite groups G that admit an SS-quasinormal
maximal subgroup series, i.e., a series G = Gy > Gy > -+ > G; > -+ > Gp_1 >
G, = 1 where all G; are SS-quasinormal in G. They showed that if G possesses
an SS-quasinormal maximal subgroup series, then G is solvable. Furthermore, G
is supersolvable if and only if G possesses an SS-quasinormal maximal subgroup
series which is subnormal in G.

In the light of the above investigations, it seems meaningful to investigate fi-
nite groups which possess an S-quasinormally embedded maximal subgroup series.

However, such groups need not be solvable, we have the following example:

Example 1.1. Let G =PSL(2,7). Then G has a maximal subgroup of order
21, say G1. Let G5 be a subgroup of Gy of order 3. Obviously, both G; and
G4 are Hall subgroups of G. In particular, they are S-quasinormally embedded
in G. So G possesses an S-quasinormally embedded maximal subgroup series:
G =Gy > G > Gy > G3 = 1. But, G is not solvable.

Inspired by Example 1.1, after checking many examples, it seems reasonable to
conjecture that if G possesses an S-quasinormally embedded maximal subgroup
series G =Gy > Gy > >G; >+ >Gp_1 > G, =1such that |G,_1 : G| is a
prime for each i € {1,2,...,n}, then G is solvable. However, we cannot yet prove
it in this paper.

Furthermore, the following example shows that a solvable group which possesses

an S-quasinormally embedded maximal subgroup series need not be supersolvable.

Example 1.2. Let G =44 and H be a subgroup of G of order 3. Then
N :G>H>1

is an S-quasinormally embedded maximal subgroup series of G. However, G is not
supersolvable. On the other hand, let K be a subgroup of G of order 4 and L be
any subgroup of K of order 2. Then



4 FEIYU GENG AND WEI MENG

Q:G>K>L>1

is a subnormal maximal subgroup series of G. But s is not S-quasinormally
embedded in G.

Observe that every S-quasinormal subgroup of G is SS-quasinormal and S-
quasinormally embedded in GG. In general, an S.S-quasinormal subgroup need not be
S-quasinormally embedded. Conversely, an S-quasinormally embedded subgroup
need not be SS-quasinormal too. In fact, there is no inclusion-relationship between
the two concepts (see [9,10]). So the first aim of this paper is to investigate the

finite groups G that admit a subnormal maximal subgroup series:
G=Gy> G >G> >GE,1D>DG, =1
such that either G; is S-quasinormal embedded in G, or SS-quasinormal in G for

each i€ {1,...,n}.

Theorem 1.3. Let G be a finite group. Then G is supersolvable if and only if G

possesses a subnormal mazimal subgroup series:
G=G>G > >G> >G1>G,=1

such that either G; is S-quasinormally embedded in G, or G; is SS-quasinormal in

G for eachi € {1,...,n}.

By Theorem 1.3, the following two corollaries are immediate.

Corollary 1.4. [11, Theorem 1.4] Let G be a finite group. Then G is supersolvable
if and only if G possesses a subnormal mazimal subgroup series which is SS-

quasinormal in G.

Corollary 1.5. Let G be a finite group. Then G is supersolvable if and only if G

possesses a subnormal maximal subgroup series which is S-quasinormal embedded

n G.

Moreover, note that if G possesses a c-c-permutable (SS-quasinormal, resp.)
maximal subgroup series, then G is solvable (see [11,12]). So the second aim of this

paper is to prove the following results.

Theorem 1.6. Let G be a finite group. If G possesses a mazimal subgroup series:
G=Gy>G1 > >G;->Gp1>G,=1
such that either G; is c-c-permutable in G, or G; is SS-quasinormal in G, then G

is solvable.

Applying Theorem 1.6, we can obtain the following two corollaries.
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Corollary 1.7. [12, Theorem 1.2] If G possesses a c-c-permutable maximal sub-

groups series, then G is solvable.

Corollary 1.8. [11, Theorem 1.2] If G possesses an SS-quasinormal mazimal

subgroups series, then G is solvable.

All unexplained notations and terminologies are standard and can be found in
[4,7].

2. Preliminaries

In this section, we collect some results which will be used in the proof of the

main results.

Lemma 2.1. [1, Lemma 1] Suppose that H is an S-quasinormally embedded sub-
group of G, K < G and N is a normal subgroup of G. Then, we have the following:
(1) If H < K, then H is an S-quasinormally embedded subgroup of K.
(2) HN/N is an S-quasinormally embedded subgroup of G/N.

Lemma 2.2. [10, Lemma 2.1] Suppose that H is an SS-quasinormal subgroup of
G, K < G and N is a normal subgroup of G. Then, we have the following:

(1) If H < K, then H is an SS-quasinormal subgroup of K.
(2) HN/N is an SS-quasinormal subgroup of G/N.

Lemma 2.3. [10, Lemma 2.2] Let H be a nilpotent subgroup of G. Then, the

following statements are equivalent:

(1) H is an S-quasinormal subgroup of G.
(2) H < F(G) and H is an SS-quasinormal subgroup of G.

Lemma 2.4. [11, Lemma 2.3] Let M be a maximal subgroup of G. If M is SS-

quasinormal in G, then |G : M| is a prime power.

Lemma 2.5. [5, Lemma 2.1] Suppose that H is a c-c-permutable subgroup of G,
K <G and N is a normal subgroup of G. Then, we have the following:

(1) If H < K, then H is a c-c-permutable subgroup of K.

(2) HN/N is a c-c-permutable subgroup of G/N.

Lemma 2.6. [5, Lemma 2.4] Let A be a mazimal subgroup of H where H < G. If

A is c-c-permutable in G, then |H : A| is a prime.

Lemma 2.7. Let G be a finite group and N be a normal subgroup of G. Suppose

that G possesses a mazximal subgroup series 0 such that each member of Q) is either
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S-quasinormally embedded in G, or SS-quasinormal in G. Then G /N also possesses
a mazximal subgroup series 0 such that each member of Q1 is either S-quasinormally

embedded in G, or SS-quasinormal in G.
Proof. Let G be a finite group and N be a normal subgroup of G. Suppose that
V. G=Gy>G1>->G>-->G,.1>G, =1

is a maximal subgroup series of G such that G; is either S-quasinormally embedded
in G, or SS-quasinormal in G, for each ¢ € {1,2,...,n}. It follows that every
G;N/N is either S-quasinormally embedded in G, or SS-quasinormal in G/N by
Lemmas 2.1(2) and 2.2(2). Write G = G/N and G; = G;N/N. Let us investigate

the following subgroup series of G:
Q:G=Gy>-->G;>--->G, =1.

For each i = 1,...,n, we see that either G; = G;_; or G; is maximal in G;_;.
Therefore, after removing the equal terms in €, we obtain that G possesses a

maximal subgroup series  which satisfies the conclusion of the Lemma. O

Lemma 2.8. Let G be a finite group and N be a normal subgroup of G. Suppose
that G possesses a mazximal subgroup series ) such that each member of Q) is either
c-c-permutable in G, or SS-quasinormal in G. Then G/N also possesses a mazimal
subgroup series Q such that each member of Q is either c-c-permutable in G, or

SS-quasinormal in G.

Proof. By Lemmas 2.2(2) and 2.5(2), the proof is similar to Lemma 2.7, and thus

we omit it. O

Lemma 2.9. [2, Lemma 2] Let N = Sy X -+ xS} be a direct product of isomorphic
non-abelian simple groups, and let M be a mazimal subgroup of N with Sy £ M.
Then one of the following assertions holds:
(1) M =D x Sy x -+ xSy, where D is mazimal in S;.
(2) One of the subgroups Sa, ..., St, say Sa, is not contained in M, then M =
D xS3x---x8;, where DNS; =DNSy =1 and S1 =Sy =D < S; x5s.

Lemma 2.10. [6, Theorem 1] Let G be a non-abelian simple group. If H is a
proper subgroup of G with index p®, where p is a prime, then one of the following
holds:
(1) G=A,, and H =A,_1, n=p"
(2) G =PSL(n,q) and H is the stabilizer of a line or hyperplane,
|G:H|=(q"—1)/(g—1) =p* and n is a prime.
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(3) G =PSL(2,11) and H =As.

(4) G =Mas and H =Mas,.

(5) G =M1 and H =M.

(6) G =PSU(4,2) and |G : H| = 27.

3. Proofs of the theorems

Proof of Theorem 1.3. The necessity is trivial as every supersolvable group has a
normal maximal subgroup series. So we only need to prove the sufficiency. Suppose
that the theorem is not true and let G’ be a counterexample of the smallest order.
Let

Q:G=Gy>G >G> D>G_1>G, =1

be a subnormal maximal subgroup series of GG such that G; is either S-quasinormally
embedded in G, or SS-quasinormal in G, for each i € {1,2,...,n}. It is obvious
that G is solvable and G; is normal in G;_; with prime index. By Lemmas 2.1(1)
and 2.2(1), every member G; of ) satisfies the hypothesis of the theorem, so G; is
supersolvable by choice of G for ¢ > 1.

Let N be a minimal normal subgroup of G. Then G/N satisfies the hypothesis
of the theorem by Lemma 2.7 and hence G/N is supersolvable. Consequently, if G
has two distinct minimal normal subgroups, say N; and N, then both G/N; and
G /N are supersolvable, and so is G. It contradicts the choice of G. Therefore, G
possesses a unique minimal normal subgroup, says N. Since G is solvable, we may
assume that N is an elementary abelian p-group for some prime p. Furthermore, if
®(G) # 1, then N < ®(G) and hence G/®(G) is supersolvable and so is G. This
is another contradiction. Therefore, we may assume that ®(G) = 1. Moreover,
applying the solvability of G again, there is a maximal subgroup H of G such that
G =HN = H x N, where H = G/N is supersolvable. Now, it is easy to see that

N = 0,(G) = F(G) = Cg(N), and Cy(N) = 1.

Furthermore, observe that Gy is normal in G and G,_1 is a subnormal subgroup

of G of prime order. We have
Gn-1 <N =0,(G) =F(G) < G;.

On the other hand, we have G; = G1 NG = Gy N HN = (G; N H) x N. Set
Hy, = G1NH, then H; is normal in H as Gy is normal in G. By the supersolvability
of G1, we have Oy, (G1) = G1. Furthermore, since O, (G1) < Oy (G) =1, Gy
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has a normal Sylow p-subgroup which is also normal in G. Consequently, N is
exactly the normal Sylow p-subgroup of G;. Hence, H; is a p’-group.

We claim that H is a Hall p’-subgroup of G. If not, then H = PyH;, where
Py € Syl,(H) has order p. By the supersolvability of G1, we conclude that Hy =
G1/N = G1/Cg,(N) is an abelian group with exponent dividing p—1. In particular,
p is the largest prime divisor of |H|. Since H is also supersolvable, H has a normal
Sylow p-subgroup. This leads to O,(G) = PoN > N, a contradiction. Hence, H is
a Hall p’-subgroup of G, the claim as desired.

Finally, by the hypothesis of the theorem, we know that G, _; is either S-
quasinormally embedded in G, or SS-quasinormal in G. If G,,_; is S-quasinormally
embedded in G, then there exists an S-quasinormal subgroup M of G such that
G,_1 is a Sylow p-subgroup of M. Since H is a Hall p’-subgroup of G, we have
MH = HM and G,,_1 is also a Sylow p-subgroup M H. However, H is a maximal
subgroup of G implies that G = M H. It follows that N = G,,_; is a subgroup
of order p. This implies that G is supersolvable, a contradiction. So we assume
that G, _1 is SS-quasinormal in G. Applying Lemma 2.3, G,,_1 is S-quasinormal
in G. It follows that G, 1H = HG,_1 < G as H is a Hall p/-subgroup of
(. Since H is a maximal subgroup of G, we have G = HG,_; which implies
|Gr—1| = |G : H| = |N|. Therefore, G is supersolvable. This is a final contradic-

tion. The proof of the theorem is complete. (]

Proof of Theorem 1.6. Suppose that the theorem is not true and let G be a

counterexample of the smallest order. Let
Q. G=Gy>G1>->G; > >G,_1>G, =1

be a maximal subgroup series of G such that G; is either c-c-permutable in G, or
SS-quasinormal in G for each i € {1,2,...,n}.

Let N be a minimal normal subgroup of G. Then G/N satisfies the hypothesis
of the theorem by Lemma 2.8. By induction, G/N is solvable. Suppose that G
has two distinct minimal normal subgroups, say N7 and Nj, then both G/N; and
G /Ny are solvable, and so is G, a contradiction. Therefore, we may assume that G
possesses a unique minimal normal subgroup, say N. Since G is non-solvable, N is
a direct product of some isomorphic non-abelian simple groups and Cg(N) = 1.

Applying Lemma 2.2(1) and Lemma 2.5(1), we know that G, satisfies the hy-
pothesis of the theorem. It follows that G is solvable by induction. So N £ G7 and
hence G1 N N is a proper subgroup of N. Since Gj is either c-c-permutable in G, or

SS-quasinormal in G, we get G; is either c-c-permutable in G, or SS-quasinormal
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in G by Lemma 2.2(1) and Lemma 2.5(1). Furthermore, applying Lemma 2.4 and
Lemma 2.6, we have |G;_1 : G;| is a prime power. Observe that [NNG,;_1 : NNG,|
divides |G;_1 : G;|, we have [IN N G,_1 : N NG| is also a prime power for each
i €{1,2,...,n}. In particular, assume that |[N : NNG1| = |[NNGo : NNG;| = p*
for some prime p. This shows that N possesses a solvable subgroup with index
prime power, namely N N G;. By Lemma 2.9, we get that N is a non-abelian
simple group.

Let j be the largest index such that [N : N NG| is a p-power. Let B = N NG,
and C = NN G,41. Then |B: C| = ¢°, where g is a prime different from p.

By hypothesis of the theorem, we know that G is either c-c-permutable in G,
or SS-quasinormal in G. If G11 is c-c-permutable in G, then there exists a Sylow

p-subgroup N, of N such that G;1 N, < G. Consequently, we have
CNp = (N N Gj+1)Np = N N Gj+1Np S N

On the other hand, if G4 is SS-quasinormal in G, there exists a subgroup B of G
such that G = Gj41B and G411 B, = B,Gj41, where B, € Syl,(B). This implies
that G;1 B, is a proper subgroup of G and |G|, = |G,+1By|p. Consequently, there
exists a subgroup G, € Syl,(G) such that G;11G, = GpG,11. It follows that
CINNG,) = (NNGyn)(N N Gy)

— NN (Gi41(NNGy))

— (Gin(NNG))NN

— (NN GyGj1) NN

=(NNGp)C.

Set N, = N NGy, then N, € Syl,(N) as N is normal in G. We also get that
CN, = N,C < N. Moreover, by calculating the p’-part of |N : CN,|, we have

[N :CNy|=|N:CNp|py =|N:Cp|=|B:C]| =q°.

This implies that the non-abelian simple group N admits subgroups G; N N and
CN, such that [N : Gy N N| and |N : CN,| are distinct prime powers. So N will
be isomorphic to one of the group in Lemma 2.10. Moreover, since PSL(2,7) is
the only simple group with subgroups of two different prime powers indices (see
[6]), we have N =PSL(2,7). Finally, observe that N is the unique minimal normal
subgroup G and Cg(N) = 1. Applying N/C-theorem, we get

N <G = G/Cq(N) <Aut(N).
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Consequently, since Aut(PSL(2,7)) &PSL(2,7).Z2, we have

PSL(2,7) = N < G <Aut(PSL(2,7)) =PSL(2,7).Z.

So G = N =PSL(2,7) or G 2PSL(2,7).Z>. By checking the maximal subgroup

series of GG, we can conclude that G does not satisfy the hypothesis of the theorem.

This is a final contradiction. The proof of the theorem is complete. ([
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