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Abstract. We study modular polynomial invariants of the cyclic group Cp

over a field of characteristic p where p is a prime number and use the reverse
lexicographic order. We focus on the leading monomial of an invariant by con-
sidering the degrees of the terminal variables. It is obtained that this degree
of each terminal variable is divisible by p when only pure powers of terminal
variables appear in the leading monomial. Then, we show that this divisibility
also holds for the general case, that is, the degrees of the terminal variables
of the leading monomial are divisible by p. After proving this property, we
investigate the cyclic group Cpk for a positive integer k with the same char-
acteristic p. By noticing that the same arguments with only minor changes
can be applied to this case, we get that p divides the degree of each terminal
variable.
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1. Introduction

For a given monomial order <, the largest monomial appearing in a polynomial f
is called the leading (or initial) monomial and denoted by LM<(f). Leading mono-
mials are beneficial since the ideal generated by leading monomials is a monomial
ideal and it inherits some properties from the original ideal. Thus, considering the
ideal of leading monomials is a shortcut to figure out combinatorial and geometrical
properties of an ideal.

Monomial ideals and lead-term ideals provide a connection between commuta-
tive algebra and combinatorial algebra. As a conclusion, we note that the leading
monomials are not only suitable objects for the computational aspect but crucial for
the combinatorial structure of an ideal as well. For detailed theory of the leading
terms, we refer the reader to [5].
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We include basic notations and definitions about invariant theory because the
main task to be accomplished is related to the leading monomials of a modular
polynomial invariant. Let V be a vector space and V ∗ represents the dual space of
V . For an infinite field F , the coordinate ring of V is denoted by F [V ] and it is

F [V ] = F [x1, x2, . . . , xn]

where x1, x2, . . . , xn form a basis of V ∗.
Let G be a group and the action of G on the coordinate ring may be defined as

follows

(af)(v) = f(a−1(v))

for a ∈ G, v ∈ V and f ∈ F [V ].
The invariant ring is defined by

F [V ]G := {f ∈ F [V ] | g(f) = f for all g ∈ G}.

After the definition of the invariant ring, recall that it is a modular case if the
characteristic of F divides the order of G. For a survey of results on this invariant
theory, see [2] and [3].

Throughout this paper, we use reverse lexicographic order < by fixing the order
of the variables as x1 < x2 < · · · < xn. The reason for using reverse lexicographic
order is that an ideal and its leading-term ideal share some important properties
with this order. In other words, reverse lexicographic order enables us to catch a
relation between an ideal and its initial ideal, see [4, §15.7].

Biggest variable xn is called terminal variable and we discuss the degree of termi-
nal variable in leading monomial of a modular polynomial invariant. In this paper,
we study cyclic groups of prime order pk in modular situation, i.e., the character-
istic of F is p. We suggest [1], [2] and [7] for more background on invariants for
cyclic groups.

In this study, we prove p divides the degrees of terminal variables arising in
the leading monomial of a modular polynomial invariant for Cpk . To reach this
conclusion, we consider whether the leading monomial of an invariant consists of
only pure powers of terminal variables or not with the main emphasis on a single
indecomposable module.

2. Main results

Let G = Cpk and g be a fixed generator of the cyclic group. For a G-module
V over F , there are |G| = pk indecomposable Cpk -modules over the field, namely
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V1, . . . , Vpk and it is known

V = Vr1 ⊕ Vr2 ⊕ · · · ⊕ Vrs

for all 1 ≤ rj ≤ pk when j varies from 1 to s.
By noting the isomorphism between Vrj and its dual, we consider the dual basis

x1,j , x2,j , . . . , xrj ,j of V ∗
rj and the action of g on these variables is given as follows

g(xi,j) = xi,j + xi−1,j for all 1 < i ≤ rj and g(x1,j) = x1,j .

Furthermore, it is obvious that the description of polynomial ring F [V ] is

F [V ] = F [xi,j | 1 ≤ i ≤ rj and 1 ≤ j ≤ s].

We set monomial ordering as reverse lexicographic order with

x1,j < x2,j < · · · < xrj ,j for all 1 ≤ j ≤ s

and the ordering of the variables lying in different indecomposable modules is de-
fined by

xrj ,j < x1,j+1 for all 1 ≤ j ≤ s− 1.

We call the xrj ,j for all possible j varying from 1 to s as terminal variables.
Alternatively, the terminal variable is the biggest variable in the basis of each
indecomposable module. We pay attention to the degrees of the terminal variables
occurring in leading monomials.

Firstly, we concentrate on a single indecomposable G-module Vrn with 1 ≤ n ≤ s

because the generalization is easily followed from single indecomposable module
case. Remember that the basis elements of Vrn are x1,n, x2,n, . . . , xrn,n. For nota-
tional convenience, we take

yi = xi,n for all 1 ≤ i ≤ rn.

Then, we need the following lemma from [6]. (See [6, Lemma 1].)

Lemma 2.1. Take an element f ∈ F [V ]G and let M be a monomial showing up in
f . Suppose, we have a monomial M1 ≠ M and M1 appears in g(M). Then, there
exists a monomial M2 lying in f different than both M and M1 satisfying that M1

appears in g(M2).

After the statement of this lemma, we take single G-module Vrn with 1 ≤ n ≤ s

and rn > 1 into consideration. Since F [V1] = F [V1]
G, we may disregard V1. Recall

that y1, . . . , yrn form a basis for Vrn and the action of g is

g(yi) = yi + yi−1 for 1 < i ≤ rn and g(y1) = y1.
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The monomial ordering is reverse lexicographic order with y1 < · · · < yrn and
we show the following proposition.

Proposition 2.2. Let f ∈ F [Vrn ]
G and M = ydrn be the leading monomial of f for

a positive integer d. For notational purposes, we write M = LM<(f). Then, we
get that the characteristic p divides the degree of the terminal variable, p | d.

Proof. Suppose p ∤ d. Then, we apply g to M and focus on the monomials ap-
pearing in g(M). We have

g(M) = g(ydrn) = (yrn + yrn−1)
d.

Since d is not equivalent to 0 in mod p, it follows that M1 = (yrn)
d−1yrn−1 appears

in g(M) and it is different than M . Hence, we can use the previous lemma. By
Lemma 2.1, there exists a monomial M2 arising in f different than M , M1 such
that M1 should be seen in g(M2). Note that M2 < M and assume

M2 = ybrny
c
rn−1 for b, c ≥ 0.

Observe that if M2 contains a variable except that yrn , yrn−1, finding M1 in g(M2)

is not possible.
Perform g to M2 and get

g(M2) = (yrn + yrn−1)
b(yrn−1 + yrn−2)

c if rn > 2

or we have

g(M2) = (yrn + yrn−1)
b(yrn−1)

c for rn = 2.

Since M1 lies in g(M2), we have two options as follows:

M1 = yb−1
rn yrn−1 with c = 0, b = d or M1 = ybrny

c
rn−1 with c = 1, b = d− 1.

Recognize that first choice implies M2 = M and second choice implies M2 = M1.
This is a contradiction and so the assertion of the proposition follows. □

In Proposition 2.2, we deal with the case of a pure power of the terminal variable
yrn . Next, we extend this case to more generalized version.

Theorem 2.3. Let f ∈ F [Vrn ]
G and M = ydrnN = LM<(f) with no yrn in N for a

positive integer d. We can say that N is a monomial in the variables y1, . . . , yrn−1.
Then, we have p | d.

Before the proof of Theorem 2.3, we need a technical lemma.
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Lemma 2.4. Let M = ydrnN be a monomial appearing in an invariant with no yrn

in N and d > 0. Assume that

M1 = (yrn)
d−1yrn−1N appears in g(M).

For a monomial M2 ̸= M1 in F [Vrn ] with M2 < M , M1 does not appear in g(M2).

Note that we do not need the assumption that M is the leading monomial for
this lemma. This assumption is necessary in the statement of Theorem 2.3.

Proof of Lemma 2.4. If we have only one variable yrn , we handle this case by
the same idea used in Proposition 2.2. Take

M = ydrny
br
ar
ybr−1
ar−1

. . . yb1a1
with ar > · · · > a1.

Suppose M1 = (yrn)
d−1yrn−1y

br
ar
y
br−1
ar−1 . . . y

b1
a1

lies in g(M2) and seek a contradic-
tion. Let α be the degree of ya1 in M2 and realize that we focus on the smallest
variable with respect to the reverse lexicographic order. The ordering M2 < M

implies that α ≥ b1 since there is not any variable less than ya1
inside M2. It

remains to prove α ≤ b1. On the other hand, to catch a monomial containing yb1a1

in g(M2), we look at the consecutive terms and compute

g(yβa1+1) = (ya1+1 + ya1
)β

and
g(yαa1

) = (ya1
+ ya1−1)

α or g(yαa1
) = yαa1

if a1 = 1

in g(M2) for some power β. For all cases, the main purpose is to get a term including
yb1a1

without {yi | i < a1} in g(M2). Therefore, we have α ≤ b1 and this implies
α = b1.

Next, we choose the smallest variable distinct from ya1 with respect to the reverse
lexicographic order. Let γ be the degree of ya2 in M2. By M2 < M , we have γ ≥ b2.
On the other hand, to catch a monomial containing yb2a2

in g(M2), we look at the
consecutive terms and compute

g(yea2+1) = (ya2+1 + ya2
)e

and
g(yγa2

) = (ya2 + ya2−1)
γ

in g(M2) for some power e. For all cases, the main purpose is to get a term
including yb2a2

yb1a1
without {yi | i < a2} in g(M2). Therefore, we have γ ≤ b2 by

noting α = b1 and this implies γ = b2. Proceeding in the same way, we conclude
that the exponents of all variables occurring in M2 are identical to those in M ,
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which implies that M2 = M but it is an obvious contradiction. Thus, we verify the
assertion of the lemma. □

After demonstration of this Lemma 2.4, we may precisely establish the proof of
Theorem 2.3 by using Lemma 2.1.

Proof of Theorem 2.3. Suppose p does not divide d. Then, it follows that M1 =

yd−1
rn yrn−1N appears in g(M) −M with non-zero coefficient. Note that arising of
M1 in g(M)−M is equivalent to occurring of M1 in g(M) with M1 ̸= M .

By Lemma 2.1, there is a monomial M2 different than both M , M1 such that
M1 shows up in g(M2). Notice that M is the leading monomial so the condition
M2 < M as seen in Lemma 2.4 is satisfied. However, it is a clear contradiction with
Lemma 2.4. Hence, we acquire p | d. □

After managing the single indecomposable G-module Vrn case, we concentrate
on

V = Vr1 ⊕ Vr2 ⊕ · · · ⊕ Vrs

the direct sum of indecomposable G-modules for the cyclic group Cpk and we attain
the same divisibility property as a corollary of Theorem 2.3 with a little manipula-
tion.

Theorem 2.5. Let f ∈ F [V ]G and the leading monomial of f is

LM<(f) =
∏

1≤j≤s

x
αj

rj ,j
Nj

with no xrj ,j in Nj ∈ F [Vrj ] for positive integers αj. Then, we show that p divides
αj for all values of j.

Proof. By giving particular attention to the projection of f onto single indecom-
posable G-module Vrj , it may be observed that the projection of LM<(f) onto the
same G-module Vrj is the biggest monomial appearing in the projected version of
f onto Vrj . In simpler terms, the leading monomial in the projection of f onto Vrj

is x
αj

rj ,j
Nj with no xrj ,j in Nj .

Otherwise, it is contradictory with that LM<(f) is the leading monomial and
we would also like to point out that the projection of f onto Vrj lies inside the
invariant ring F [Vrj ]

G.
By using this fact with the implementation of Theorem 2.3, we gain our desired

result, that is
p | αj for all 1 ≤ j ≤ s. □
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Remark 2.6. To obtain the divisibility as in Theorem 2.5 for Cpk follows a similar
process to getting the same divisibility for Cp because the primary workflow is
coming from the single indecomposable module case. To clarify, the number of
direct summands of V does not influence the proof of Theorem 2.5.
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