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ABSTRACT. We study modular polynomial invariants of the cyclic group Cj
over a field of characteristic p where p is a prime number and use the reverse
lexicographic order. We focus on the leading monomial of an invariant by con-
sidering the degrees of the terminal variables. It is obtained that this degree
of each terminal variable is divisible by p when only pure powers of terminal
variables appear in the leading monomial. Then, we show that this divisibility
also holds for the general case, that is, the degrees of the terminal variables
of the leading monomial are divisible by p. After proving this property, we
investigate the cyclic group Cp i for a positive integer k with the same char-
acteristic p. By noticing that the same arguments with only minor changes
can be applied to this case, we get that p divides the degree of each terminal

variable.
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1. Introduction

For a given monomial order <, the largest monomial appearing in a polynomial f
is called the leading (or initial) monomial and denoted by LM (f). Leading mono-
mials are beneficial since the ideal generated by leading monomials is a monomial
ideal and it inherits some properties from the original ideal. Thus, considering the
ideal of leading monomials is a shortcut to figure out combinatorial and geometrical
properties of an ideal.

Monomial ideals and lead-term ideals provide a connection between commuta-
tive algebra and combinatorial algebra. As a conclusion, we note that the leading
monomials are not only suitable objects for the computational aspect but crucial for
the combinatorial structure of an ideal as well. For detailed theory of the leading

terms, we refer the reader to [5].
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We include basic notations and definitions about invariant theory because the
main task to be accomplished is related to the leading monomials of a modular
polynomial invariant. Let V' be a vector space and V* represents the dual space of
V. For an infinite field F', the coordinate ring of V is denoted by F[V] and it is

F[V] = Flxy,z2,...,%4)

where 1, s, ...,T, form a basis of V*.
Let G be a group and the action of G on the coordinate ring may be defined as

follows

(af)(v) = f(a™'(v))
fora e G,veVand f € F[V].
The invariant ring is defined by

FIV|¢ = {feF[V]|g(f)=f forall g e G}.

After the definition of the invariant ring, recall that it is a modular case if the
characteristic of F' divides the order of G. For a survey of results on this invariant
theory, see [2] and [3].

Throughout this paper, we use reverse lexicographic order < by fixing the order
of the variables as 1 < 9 < --- < x,. The reason for using reverse lexicographic
order is that an ideal and its leading-term ideal share some important properties
with this order. In other words, reverse lexicographic order enables us to catch a
relation between an ideal and its initial ideal, see [4, §15.7].

Biggest variable x,, is called terminal variable and we discuss the degree of termi-
nal variable in leading monomial of a modular polynomial invariant. In this paper,
we study cyclic groups of prime order p* in modular situation, i.e., the character-
istic of F' is p. We suggest [1], [2] and [7] for more background on invariants for
cyclic groups.

In this study, we prove p divides the degrees of terminal variables arising in
the leading monomial of a modular polynomial invariant for Cp,x. To reach this
conclusion, we consider whether the leading monomial of an invariant consists of
only pure powers of terminal variables or not with the main emphasis on a single

indecomposable module.

2. Main results

Let G = Cpr and g be a fixed generator of the cyclic group. For a G-module

V over F, there are |G| = p* indecomposable Cpr-modules over the field, namely
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Vi,..., Vpe and it is known
V=V.,eV,o -0V,

forall 1 <r; < p* when j varies from 1 to s.
By noting the isomorphism between V., and its dual, we consider the dual basis

T1,5, @25, -+, Ty j Of VTTE and the action of g on these variables is given as follows
g(xij) =z ;+xi—1; forall 1 <i <r;and g(z1,;) = 1.
Furthermore, it is obvious that the description of polynomial ring F[V] is
FlV]=Flz;;|1<i<rjand 1<j<s].
We set monomial ordering as reverse lexicographic order with
Ty <Toj < <xyjforalll <j<s

and the ordering of the variables lying in different indecomposable modules is de-
fined by
Trj g < X141 forall1<j<s—1.

We call the ., ; for all possible j varying from 1 to s as terminal variables.
Alternatively, the terminal variable is the biggest variable in the basis of each
indecomposable module. We pay attention to the degrees of the terminal variables
occurring in leading monomials.

Firstly, we concentrate on a single indecomposable G-module V,. with1 <n <s
because the generalization is easily followed from single indecomposable module
case. Remember that the basis elements of V,. are z1,,%245,...,%r, n. For nota-

tional convenience, we take
Yi =xip forall 1 <i <.
Then, we need the following lemma from [6]. (See [6, Lemma 1].)

Lemma 2.1. Take an element f € F[V]Y and let M be a monomial showing up in
f. Suppose, we have a monomial My # M and M, appears in g(M). Then, there
exists a monomial My lying in f different than both M and My satisfying that M,
appears in g(Ms).

After the statement of this lemma, we take single G-module V,, with 1 <n <s
and r,, > 1 into consideration. Since F[V;] = F[V1]%, we may disregard V. Recall

that y1,...,y,, form a basis for V,. and the action of g is

9(yi) = yi +yi—1 for 1 <i <r, and g(y1) = y1.
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The monomial ordering is reverse lexicographic order with y; < --- < y,, and

we show the following proposition.

Proposition 2.2. Let f € F[V, | and M = yfn be the leading monomial of f for
a positive integer d. For notational purposes, we write M = LML (f). Then, we

get that the characteristic p divides the degree of the terminal variable, p | d.

Proof. Suppose p { d. Then, we apply g to M and focus on the monomials ap-
pearing in g(M). We have
_ d\ _ d
9(M) = g(yy,,) = Yr, +yr,—1)"
d=ly, _1 appears

in g(M) and it is different than M. Hence, we can use the previous lemma. By

Since d is not equivalent to 0 in mod p, it follows that M = (y,.,)
Lemma 2.1, there exists a monomial M arising in f different than M, M; such
that M; should be seen in g(Ms). Note that My < M and assume

My =y, yy, _y for b,c>0.

Observe that if My contains a variable except that y, , y, —1, finding M; in g(Ms)
is not possible.

Perform g to Ms and get

9(Mz) = (yr, + yrn—l)b(yrn—l + Yr,—2)¢ if > 2
or we have
9(Ms) = (Yr, + Yr—1)"(Yr, 1) for rp, = 2.
Since M lies in g(Ms), we have two options as follows:
M, = yf;lyrn,l with c=0,b=d or M; = yffnyﬁnfl withe=1,b=d—1.

Recognize that first choice implies Ms = M and second choice implies My = M;.

This is a contradiction and so the assertion of the proposition follows. O

In Proposition 2.2, we deal with the case of a pure power of the terminal variable

Yr, . Next, we extend this case to more generalized version.

Theorem 2.3. Let f € F[V,.]¢ and M = y¢ N = LM(f) with no y,, in N fora
positive integer d. We can say that N is a monomial in the variables yi,. .., Yr, 1.

Then, we have p | d.

Before the proof of Theorem 2.3, we need a technical lemma.
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Lemma 2.4. Let M = yan be a monomial appearing in an invariant with no y,,
in N and d > 0. Assume that

My = (yr,)* 'yr, 1N appears in g(M).
For a monomial Mz # My in F[V,, | with My < M, My does not appear in g(Mz).

Note that we do not need the assumption that M is the leading monomial for

this lemma. This assumption is necessary in the statement of Theorem 2.3.

Proof of Lemma 2.4. If we have only one variable y, , we handle this case by

the same idea used in Proposition 2.2. Take
M = yfnyZ:yZ;:ll . .yzll with a, > -+ > a.

Suppose M; = (yrn)d_lyrn,lygj_yg:j ...y5 lies in g(M>) and seek a contradic-
tion. Let o be the degree of y,, in My and realize that we focus on the smallest
variable with respect to the reverse lexicographic order. The ordering My < M
implies that a > b; since there is not any variable less than y,, inside Ms. It
remains to prove a < b;. On the other hand, to catch a monomial containing yf;ll

in g(M>), we look at the consecutive terms and compute

g(yfIH) = (Yay,+1 + yal)'B
and
9W5,) = Way + Ya,—1)" or g(ya,) = w3, if a1 =1

in g(My) for some power 3. For all cases, the main purpose is to get a term including
ybr without {y; | i < a1} in g(Ms). Therefore, we have v < by and this implies
a=b.

Next, we choose the smallest variable distinct from y,, with respect to the reverse
lexicographic order. Let v be the degree of y,, in My. By My < M, we have v > bs.
On the other hand, to catch a monomial containing ygg in g(Ms), we look at the

consecutive terms and compute

9Wari1) = Wast1 + Yas)©
and
9Wa,) = Way + Yas—1)"

in g(Ms) for some power e. For all cases, the main purpose is to get a term
b

a

including y42y% without {y; | i < a2} in g(Ms). Therefore, we have v < by by
noting o = by and this implies v = by. Proceeding in the same way, we conclude

that the exponents of all variables occurring in M, are identical to those in M,
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which implies that My = M but it is an obvious contradiction. Thus, we verify the

assertion of the lemma. O

After demonstration of this Lemma 2.4, we may precisely establish the proof of

Theorem 2.3 by using Lemma 2.1.

Proof of Theorem 2.3. Suppose p does not divide d. Then, it follows that M; =
yd=1y, 1N appears in g(M) — M with non-zero coefficient. Note that arising of
M in g(M) — M is equivalent to occurring of My in g(M) with My # M.

By Lemma 2.1, there is a monomial M, different than both M, M; such that
M; shows up in g(Ms). Notice that M is the leading monomial so the condition
My < M as seen in Lemma 2.4 is satisfied. However, it is a clear contradiction with

Lemma 2.4. Hence, we acquire p | d. ([l

After managing the single indecomposable G-module V,. case, we concentrate

on
V=V 0V, &V,

the direct sum of indecomposable G-modules for the cyclic group C),x and we attain
the same divisibility property as a corollary of Theorem 2.3 with a little manipula-

tion.
Theorem 2.5. Let f € F[V]Y and the leading monomial of f is

o
LM<(f) = H xrjj’ij
1<j<s
with no x,, j in Ny € F[V,,] for positive integers a;. Then, we show that p divides

oy for all values of j.

Proof. By giving particular attention to the projection of f onto single indecom-
posable G-module V;.,, it may be observed that the projection of LM (f) onto the
same G-module V.. is the biggest monomial appearing in the projected version of
J onto V... In simpler terms, the leading monomial in the projection of f onto V.,
is zfj_"7ij with no x,, ; in Nj.

Otherwise, it is contradictory with that LM, (f) is the leading monomial and
we would also like to point out that the projection of f onto V;. lies inside the
invariant ring F[V,,]¢.

By using this fact with the implementation of Theorem 2.3, we gain our desired

result, that is

plajforalll <j<s. O
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Remark 2.6. To obtain the divisibility as in Theorem 2.5 for C,x follows a similar
process to getting the same divisibility for C}, because the primary workflow is
coming from the single indecomposable module case. To clarify, the number of

direct summands of V' does not influence the proof of Theorem 2.5.
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